
This introduction to the principalfeatures ofAda
emphasizes those aspects expected to offer significant

advantage in large-scale program development.

What is Ada?
Ronald F. Brender

Isaac R. Nassi
Digital Equipment Corporation

During the five years that Ada was being developed
under the sponsorship of the US Department of Defense,
considerable effort went into determining what require-
ments a language intended principally for embedded
computer applications had to satisfy. The resulting lan-
guage, however, is suitable not only for embedded com-
puter applications, but also for general systems program-
ming, real-time industrial applications, general applica-
tions programming, numeric computation, and for teach-
ing good programming practices. This article introduces
some of the concepts and features of Ada from which it
derives its strength.

Modularization and large-scale software
development

In recent years, many efforts have been made to reduce
the complexity of large-scale software development proj-
ects. A number of these efforts are based on the notion of
modularization-that is, partitioning solutions to large,
complex problems into smaller, more understandable,
and hence more manageable components.

Software maintenance was also a major concern in the
design of Ada. Various kinds of inconsistencies that nor-
mally occur during the evolution of large systems will not
occur in systems developed in Ada. A compilation data
base allows modularization and separate compilation of

components without giving up the ability to provide
program-wide type checking.
Ada encourages, even demands, what has been called a

"constructive" approach to programming. The facilities
in Ada have been formulated to provide mechanisms for
modularization.
The value of abstraction* in programming-long ap-

preciated by programmers and language designers-has
received much well-deserved publicity in recent years. In
most languages, the procedure is the primary abstraction
mechanism. To a lesser extent, separate compilation of-
fers a means for modular grouping of related procedures
and, perhaps, some common data objects. However, sep-
arate compilation as a means of abstraction is not directly
supported in the widely used languages; when the concept
has been employed, it has been through conventions for
using the language. In Ada, the notion of abstraction has
been elevated to a prominent position.

Packages. The concept of the Ada package is probably
the language's principal contribution to the programming
art. A package consists of two components-a specifica-
tion part and an implementation part. Each is a unit,
which means that each can reside in a separate file and can
be compiled separately.

*We use the term "abstraction" in a general way to mean the process by
which we distinguish the functional characteristics of a facility from the
implementation of that facility.

0018-9162/81/0600-0017$00.75 (1981 IEEE 17June 1981

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

The following examplet illustrates the structure of a
package:

(File A)

package MY-PACKAGE is

private

end MY-PACKAGE;

(File B)

package body MY-PACKAGE

end MY-PACKAGE;

the visible and private parts
form the package
specification

this is the visible part

this is the private part

.is this is the package
body

The package specification is simply a sequence of
declarations. The sequence up to the occurrence of the
word "private" is called the visible part of the specifica-
tion. The last part of a package specification is called the
private part. The private part is not always needed and
will be further described below.
The package body is the means by which the package

provides the operations promised in the package specifi-
cation. In the body, the code for the operations is given.
The body may also contain other declarations needed to
implement the operations, but they need not, indeed
should not, be known or usable outside of the package
body.

The package is thought of as a set of
facilities provided for the benefit of other

packages and procedures.

The package is thought of as a set of facilities provided
for the benefit of other packages and procedures. The
package specification is the means by which the names of
these facilities are made available. The declared names
identify the facilities of the package. These names can
define operations in the form of procedures and func-
tions. For operations, only the name, the type of the
returned value (if any), and the names and types of the
formal parameters are given. The names given in the
specification can also define types, exceptions, tasks, and
constant and variable data objects.
An example of a specification defining a simple

package to perform I/O on a line-oriented text file is:

package TEXT is
type FILE is private;
NO-FILE : constant FILE;

tvertical bars are used in this and later examples to indicate the possible
presence of declarations or statements not relevant to the example.

type MODE is (READ, WRITE);
IO_ERROR: exception;
procedure OPEN

(F : out FILE; M: in MODE; NAME: in STRING);
procedure GET (F: in FILE; S: out STRING);
procedure PUT (F : in FILE; S : in STRING);
procedure CLOSE (F: in FILE);

private
type FILE is new INTEGER;
NO-FILE constant FILE := 0;

end TEXT;

In this example, the type FILE is introduced and used in
the visible part of the specification, but its actual defini-
tion does not appear until the private part. Users of the
package can declare variables of type FILE, but they are
not able to exploit intentionally or accidentally the fact
that a FILE variable is represented as an integer. Presum-
ably, the package body for this example would use the
FILE value as an index into an internally maintained table
of more traditional file descriptors.
NO-FILE is a variable that is constant-that is, its

value cannot be changed even in the package body. It
represents a file that is not opened. Its representation as
the integer value zero is also private. Type MODE is
defined as an enumeration-that is, as an ordered set of
discrete, named literal values. Because the complete
definition is given in the visible part, all of the operations
for enumerations are available to a user.
The procedures introduce the operations that can be

used. Note that the bodies of the procedures are not
given; these would be given in the package body (not
shown).

Abstraction. The key to abstraction is information
hiding. Ada provides two principal mechanisms for
hiding details of implementation while exporting, or mak-
ing available to users, the mechanisms for using the im-
plementation. The first has already been described. The
fact that the package is composed of two physically
separate parts-the specification and the body-forms
the basis for hiding the implementation details of the
package. Indeed, given the specification, it is possible to
compile programs which make use of the package before
the package body even exists. All ofthe information need-
ed to compile programs referencing a package is given in
the package specification.
The second mechanism is the private part of the

package specification. Its purpose is to provide a place for
declarations that are necessary to define the physical in-
terface of the package, but which must not be included in
its logical interface. The physical interface of a package
provides the information that a compiler must have when
compiling a program that uses facilities provided by the
package. The logical interface is simply the visible part of
the package. The distinction between physical and logical
interface is not meant to imply that the information con-
tained in the private part is invisible to the user of a
package. It is not. Instead, it implies that the user of the
package is unable to make use of the information con-
tained in the private part in any way that will affect the
correctness of his program.

COMPUTER18

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

In the example specification for the package TEXT, the
declaration of the private type FILE following the word
"private" is part of the physical interface. This allows
compilers to allocate storage for file objects. This distinc-
tion between physical and logical interfaces permits the
following maintainability characteristics to hold.

* Changes to the package body are guaranteed, first of
all, not to require modifications to the source of pro-
grams referencing the package and, secondly, not to
require recompilations of those programs.

* Changes to the private part are guaranteed not to re-
quire any modifications in the source code of pro-
grams that reference the package, but may require
recompilation of the source.

* Changes to the visible part may require changes to
the source code, and hence recompilation. For exam-
ple, the number of parameters of a procedure might
be changed.

Control over the name space. One of the most difficult
problems faced by large programming projects is the
management of names and the sharing of declarations to
be used by many programs. This problem manifests itself
in large, relatively unstructured, and frequently difficult
to manage files of shared declarations; complex naming
conventions; and/or multiple declarations of symbols.
Algol-like scope rules have been considerably extended to
form the basis of name management in Ada.
Ada facilitates management of a program's name space

by requiring each compilation unit to indicate the other
compilation units with which the unit is to be compiled
and upon which it depends. For example, package C
might begin with the clause "with A, B;" which states
that package C can refer to the names A and B, which
must be available in the compilation library, and can use
names declared in A and B. Even though A or B might de-
pend on other compilation units, this is not reflected in
C-unless, of course, C needs to use these other units
directly.
Name qualification aids in keeping symbols distinct.

For example, consider the following unit which makes use
of the package TEXT illustrated earlier:

with TEXT;
procedure COPY-TEXT (IN-FILENAME,
OUT-FILEJNAME : STRING) is

MAX_STRING_LENGTH : constant := 133;
IN-FILE, OUT-FILE : TEXT.FILE : = TEXT.NO_FILE;
LINE: STRING (1..MAX_STRING_LENGTH);

begin
TEXT.OPEN (IN-FILE, TEXT.READ,
INWFILE-NAME);

TEXT.OPEN (OUT-FILE, TEXT.WRITE,
OUT_FILE_NAME);

loop
TEXT.GET (IN-FILE, LINE);
TEXT.PUT (OUT-FILE, LINE);

end loop;
exception
when TEXT.IO_ERROR = >
TEXT.CLOSE (IN-FILE);
TEXT.CLOSE (OUT-FILE);

when others = >
raise;

end COPY-TEXT;

By default, a name declared in a package specification
must be denoted outside the package using the name of
the package and a dot as a prefix. Two examples above
would be TEXT.FILE and TEXT.OPEN.
As a programming convenience, a "use clause" can be

written to indicate that names in a package can be used
without the package name prefix. A use clause is shown in
the example below, where only selected parts of the exam-
ple given above are repeated.

with TEXT; use TEXT;
procedure COPY-TEXT (. .) is

IN-FILE, OUT-FILE: FILE := NO-FILE;

begin
OPEN(..
OPEN(..

end COPY-TEXT;

Ada's rules assure that confusion cannot result when,
for example, there are declarations of the name FILE in
two or more packages that are used together in the same
unit. In such a case, the compiler will detect and report the
ambiguity. The program can then be changed to use
qualified names as needed to avoid the ambiguity.

Large files incorporated by text inclusion are avoided,
because a programmer specifies in a with clause only
those packages whose constituents are referenced. Ad-
mittedly, the rules for determining the possible meanings
of a name are more complicated than in familiar lan-
guages. However, the problem the rules are trying to solve
is itself complicated.

Overloaded names. In Ada, names of subprograms can
be overloaded-that is, the same name can be used for
more than one subprogram (even in the same scope), pro-
vided the different declarations can be distinguished by
the number, types, and names of the parameters and the
result type. For example,

declare
procedure P (X: INTEGER) is ...
procedure P (X: FLOAT) is ...
A: INTEGER;
B: FLOAT;

begin
P (A); calls the first declared P
P (B); calls the second declared P

end;

This facility contributes to both abstraction and name-
space management. Abstraction is aided because the
same procedure name can be used for conceptually
equivalent operations on different types of data. For ex-
ample, SQRT can be used for the square root operation
for the various precisions of floating-point types. Name

June 1981 19

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

management is aided because fewer names are needed,
and naming conventions can be simplified or avoided.

Overloading can also be applied to the predefined
operations of Ada so that they can be used with user-
defined types. For example, a package that defines com-
plex arithmetic, which is not part of standard Ada, would
undoubtedly have a specification resembling the follow-
ing example.

package COMPLEX-ARITHMETIC is
type COMPLEX is

record
RE: FLOAT;
IM : FLOAT;

end record;
function " + " (X, Y : COMPLEX) return COMPLEX;
function " " (X. Y : COMPLEX) return COMPLEX;

otherfunctions or proceduresfor type COMPLEX

end COMPLEXARITHMETIC;

In this example, the predefined operators + and - are
overloaded so that they can be used with operands of the
user-defined type COMPLEX.

Overloading can be applied to the predefined-
operations of Ada so that they can be used

with user-defined types.

While overloaded names make the compiler's job
harder-that is, it has to determine which declaration is
the right one to use-they nevertheless make it easier to
write understandable programs.

The compilation data base. Units of Ada source text
can be separately compiled. Traditionally the problem
with separately compiled sources has been that they offer
an opportunity to inadvertently breach the type system.
For example, a procedure defined with several parameters
in one source file is called with too few parameters or with
parameters in the wrong order in another source file.
The Ada viewpoint is that compilation of several units

can be separate (that is, individual units can be compiled
without compiling the complete program) but not in-
dependent (that is, in the absence of information about
other parts of the program). Compilations are done in the
context of a data base of previously compiled units. The
Ada compiler manages the data base.
The language is defined so that the compiler can recog-

nize and keep track of the logical dependencies between
units in separate sources. If unit B makes use of informa-
tion defined in unit A, then, naturally, unit A must be
compiled before unit B. Moreover, if unit A is modified
and recompiled, then the compiler knows that unit B, as
well as any units that depend on B, is no longer valid and
must eventually be recompiled as well. The compiler will
then refuse to compile any unit that depends on B until B
itself is recompiled.
An Ada compiler or another component ofan Ada pro-

gramming system is intended to provide means for query-
ing the recompilation status of the data base, although

this is not part of the language definition. Furthermore,
before any unit is incorporated into an executable pro-
gram, the data base would be checked to assure that no in-
valid units are required.

Naturally, certain kinds of program modification re-
quire that other dependent units be recompiled. Howev-
er, the Ada data base is a source of information that will
help in minimizing the amount of recompilation while pre-
serving the same degree of consistency checking across sep-
arately compiled units that is possible within a single unit.

Methods of development. Ada directly supports both
bottom-up and top-down software development method-
ologies.
Bottom-up development can proceed as follows. A

member of the programming team is selected to be re-
sponsible for a package. The team agrees on a package
specification. Subsequently the team need discuss the
package only for proposed changes to the specification.
The person responsible for the package compiles a
specification for the package. The compiler automatical-
ly inserts it in the data base. Other team members then
compile other units which refer to that specification.
Sometime before the package is incorporated into an ex-
ecutable program, the person responsible for the package
writes and compiles the body.
Top-down development is accomplished with the aid of

program stubs and subunits. A stub indicates the place
where a separately compiled subunit must eventually be
provided. For example, while developing package P, a
programmer might write:

(File P0)
package body P is

type MY-TYPE is array (1. .10) of INTEGER;
procedure NOT-YET
(X: MY-TYPE) is separate; stub

begin

end P;

The reserved word "separate" in this example tells the
compiler that a subunit consisting of the procedure named
NOT-YET with one parameter of type MY-TYPE will be
compiled later. The compiler saves in the data base all of
the contextual information needed from P for the subse-
quent compilation of NOT_YET.

Later, a programmer can compile the following sub-
unit.

(File P1)
separate (P)
procedure NOT-YET (X: MY-TYPE) is

begin

end;

COMPUTER20

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

In this case, the key word "separate" and its argument
P tells the compiler that what follows is a subunit ofP and
must be compiled as though it were completely declared
where indicated in unit P. The context surrounding the
declaration of NOT-YET in P is automatically recalled to
begin the compilation. Thus, references to items declared
in P, such as MY-TYPE, are allowed within NOT-YET.
In this way, top-down programming can proceed in an
orderly, controlled manner.

Systems programming in Ada

Although systems programming has been character-
ized in a number of different ways, the following features
must be present in any language intended to be a systems
programming language.

* It must be possible to generate very efficient code for
the language.

* It must be possible to describe interfaces to programs
written in other languages, including assembly
language, as well as to describe and access their data
structures efficiently. These data structures are likely
to be arbitrarily complex, and the existing programs
are likely to have complicated calling sequences and
conventions.

* It must be possible to access various components of
the instruction set architecture, such as fixed loca-
tions in memory, and to directly interface to hard-
ware interrupts.

* The language must facilitate the construction of very
reliable programs.

Ada has these characteristics.

Efficiency. Designing the language has involved par-
ticular attention to assuring that efficient data access and
code efficiency are possible.
The language supports a full complement of predefined

data types-such as integer, fixed and floating-point
numbers, pointers, and characters-as well as arrays of
arbitrary dimension (strings are defined as arrays of
characters) and records (which are collections of data ob-
jects that need not have the same type). These data struc-
tures can be composed in arbitrarily complex ways, per-
mitting arrays of records, records embedded within
records, arrays within records, and so on. Subar-
rays-that is, slices along a dimension of an array-are
provided for arrays of one dimension (i.e., vectors) so
that an array or subarray is always a contiguous region of
storage.
The type system is constructed so that implicit run-time

description of data is not required except in traditional
cases, such as descriptors that define the bounds of arrays
when their bounds are not known during compilation,
and discriminant constraints that select from among
variant components of records. While there are some ex-
ceptions to this general statement, discussing them would
be going beyond the scope of this article.

Parameter passing in Ada is unique. The language is in-
tentionally left sufficiently vague to allow compiler im-
plementations to choose the parameter passing mecha-

nisms best suited to the objects being passed, while still
maintaining a meaning very close to that of copy seman-
tics. Each parameter has a parameter mode of "in,"
"out," or "in out" indicating how the parameter will be
used. (There is no analog to the "var" versus "val"
modes found in Pascal, for example.) In practice, nearly
all parameters of array, record, or private types can be
passed by reference, although for casual purposes, it is
generally acceptable to understand the process as one in
which actual parameters are copied into the data space
of the called procedure. Scalar and access-that is,
pointer-actual parameters are always passed using copy
semantics.
Code generation is Ada is similar to that in other pro-

cedural languages such as Fortran, Pascal, or PL/I. There
are no language-specific obstacles to generating efficient
code for a variety of conventional machine architectures.

Interfacing to existing environments. The language
segregates and controls references to non-Ada environ-
ments in order to facilitate program transportability.

Representation specifications allow the programmer to
specify the exact mapping between the bits of a data ob-
ject and the underlying storage in a straightforward way.
Thus, it is possible to describe the structure of machine
registers or hardware-defined data structures. Calling
routines written in other languages or invoking system
services while trying to cooperate with a host operating
system is also straightforward, although nonstandard
calling sequences may require compiler support.

Ada directly supports both bottom-up
and top-down software development

. methodologies.

"Pragmas" are constructs that generally provide com-
piler directives to influence the compilation without af-
fecting the meaning of the program. One of these, the in-
terface pragma, indicates that a procedure specification
corresponds to a procedure written in another language.
In conjunction with this, overloaded procedure names
allow- a user to declare a procedure written in another
language that can take variable numbers and types of
arguments.

Finally, there are predefined subprograms that provide
an escape from the type system. In particular, these allow
a programmer to view an object of one type as if it were of
any other type. For example, a floating-point value could
be viewed in terms of its hardware representation as a
packed record with several fields which are arrays of bits.
These operations are totally run-time efficient in that they
generate no code.

Reliability. The language is strongly typed in the sense
that all type-checking is done at compile-time. However,
certain forms of run-time type parameterization, such as
dynamic range constraints, are possible. The checking of
these parameters occurs during execution. If maximal
run-time performance is desired, these checks can be

June 1981 21

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

suppressed by using a pragma-with the obvious loss of
safety.
When constraint violations are detected, exceptions are

raised. Exception handlers are highly structured, and pro-
grammers can easily write their own. Exceptions are of
two varieties, predefined and user-defined. Both are
handled in precisely the same way since the language does
not distinguish between the two with special rules. When
an exception is raised, execution of a handler replaces the
exception of the block or subprogram body in whose
dynamic context the exception occurred.

Concurrency

For real-time applications, Ada provides facilities for
multitasking-that is, for logically parallel threads of ex-
ecution that can cooperate in carefully controlled ways.

Tasks. A task is an independent thread of execution.
Like a package, a task is divided into a specification part
and a body. Likewise, the modularity and abstraction
concepts discussed for packages generally apply to tasks
as well. The task specification contains entry declarations
that define the procedure-like calls that can be made to
communicate with the task. The task body contains the
code and variables-that is, the internal state-defining
the behavior of the task.
Below is an example of a task to provide an asyn-

chronous buffer between a line-oriented producer and a
character-oriented consumer. This task declaration is
assumed to be in the context of declarations of the types
LINE and CHARACTER; the latter is, in fact, a prede-
fined type.

task LINE_TO_CHAR is this is the task specification
entry PUT-LINE (L: in LINE);
entry GET-CHAR (C: out CHARACTER);

end LINE_TO_CHAR;

task body LINE_TO_CHAR is this is the task body
BUFFER: LINE;

begin
loop

accept PUT-LINE (L in LINE) do accept statement
BUFFER := L; and its body

end PUT-LINE;
for I in BUFFER 'FIRST . . BUFFER 'LAST loop

accept GET-CHAR (C: out CHARACTER) do
C := BUFFER (I);

end GET-CHAR;
end loop;

end loop;
end;

In this example, the task specification declares the en-
tries PUT-LINE and GET-CHAR for use by other tasks.
The body declares a local variable BUFFER which is used
to hold a complete line until all of its characters have been
transmitted.
The code for the task consists of an unbounded loop

with two basic parts. The first part is an accept statement

for entry PUT-LINE. The accept statement looks quite
similar to a procedure declaration; it has formal
parameters and a body. The task waits at this point until
some other task calls the entry PUT-LINE to provide
data for the buffer. The second part is another loop that
transmits one character at a time.
The example above illustrates the declaration of a

single task object. Task types can also be declared, and
then any number of tasks of that type-that is, all with the
same properties-can be declared as objects. Indeed,
because tasks are objects, they can be components of
records or arrays. They can be pointed to by access ob-
jects, passed as parameters, created dynamically, and so
on. However, task "values" cannot be assigned.

Intertask communication. When an entry has been
called and the called task reaches an accept statement for
that entry, a "rendezvous" is said to occur. The two tasks
"come together, " and only a single thread of execution is
active for the duration of the accept statement. You can
think of this single thread of execution as belonging to
either or both of the two tasks. At the end of the accept
statement, the rendezvous is complete. Both tasks then
continue independently and asynchronously.

In the last example given, when the task is waiting at
PUT-LINE, a call on GET-CHAR is queued and the
caller must wait. Conversely, when the task is waiting at
GET-CHAR, a call to PUT-LINE is queued. Any
number of tasks can be waiting for a given entry to be ac-
cepted. In this way, coordination is assured between tasks
that provide lines and those that consume characters.

While the last example did not require more than one
accept statement, there can be any number of accept
statements for each declared entry. Other features allow
accept statements to be conditionally executed.
The example below illustrates more complicated

waiting for entry calls.

select
accept ENTRY_ (...) do

end;
or

when SOME-CONDITION = >
accept ENTRY-2 (. . .) do

end;
or

other accept alternatives

else

"else" alternative

end select;

A select statement allows a task to wait until a call is
received on any one of a set of entries. If more than one
call is waiting when the select starts, one of them will be
arbitrarily chosen for processing.
The set of possibilities need not be the same on every ex-

ecution of the select statement. An optional "when
clause"-such as shown preceding accept ENTRY_2 in

COMPUTER22

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

the example above-must evaluate to true for the entry to
be "open," that is, eligible to be accepted. If none of the
alternatives are open and the optional else alternative
appears in the select statement, it will be chosen. An
exception is raised if no alternative is open and no else is
provided.

Other variations of the select statement include a delay
or terminate alternative which can appear in place of an
accept statement. However, neither a delay nor terminate
alternative can be used in combination with the else alter-
native. Ifone ofthe alternatives ofthe select is a delay and
there are no calls waiting for any of the open alternatives,
the task at most will wait the specified amount of time be-
fore proceeding. A delay value of zero means that if no en-
try call is immediately available, the task will not wait at all.
A terminate alternative is a particularly interesting con-

struct that addresses the question, "How do you grace-
fully shut down a set of cooperating tasks without run-
ning the risk of error?" When a task is waiting at a ter-
minate alternative, it effectively declares to the run-time
environment that it is prepared to be terminated provided
that all other tasks with which it can interact directly or in-
directly are also at terminate alternatives or have com-
pleted. When all such tasks are in this state, none of the
tasks of the set will ever receive an entry call (they are all
waiting for some other task to make an entry call), so it is
safe to terminate them all. Of course, if an entry call is
received by a task that is prepared to terminate, the
"okay-to-terminate-me" status is rescinded and normal
processing resumes.

The priority of the external device
is dependent on its hardware priority
and is guaranteed to be higher than

any software priority.

The language also supports a conditional entry call in
which the calling task is not suspended and the entry call is
not made unless the called task is ready to immediately ac-
cept it. There is also a timed entry call-a generalized
form of the conditional entry call-in which the call is
cancelled if it is not accepted within a specified amount of
time. These two forms of entry call make it possible for a
calling task to assure that is will not be indefinitely
delayed by any task that it calls.

Pnorities and scheduling. A task can either have or not
have a priority. A priority is specified by a pragma. If a
priority is given, it must be a compile-time static value and
cannot be changed during execution. When no priority is
given, the compileris free to choose when scheduling deci-
sions need to be made, when the overhead of the schedul-
ing decision can be avoided, and at what priority the task
is run when it starts executing. The overhead of tasking in
Ada is small. When implemented on a single processor, it
is comparable to the overhead of procedure calls.

Interrupts. In Ada, external devices are treated as
tasks, and interrupts are treated as entry calls. The priori-
ty of the external device is dependent on its hardware

priority and is guaranteed to be higher than any software
priority. In this way, interrupfs can be directly "con-
nected" to accept statements. A consequence is that the
tasking model is powerful enough to incorporate the con-
ventional view of interrupts and interrupt handlers.

We have touched on a number of the features of the
Ada language, pointing out some of the concepts em-
ployed. The language draws on many years ofresearch in-
to algorithmic languages and programming methodolo-
gy. It incorporates and directly supports modern pro-
gramming concepts of abstraction and modularization,
separate compilation of program units without loss of
program-wide checking, concurrency, and features for
efficient systems programming. Furthermore, Ada will be
supported and widely available because of its support by
both the Department of Defense and many commercial
hardware and software vendors. Ada is certain to affect
the industry in a significant and beneficial way. O

Ronald F. Brender joined Digital Equip-
ment Corporation in 1970, where he has
worked in both research and product
development contexts. Working with re-
searchers at Carnegie-Mellon University,
he introduced the use of the original
Bliss-10 to Digital. He headed develop-
ment of Fortran IV-Plus (the first optimiz-
ing compiler implemented on the PDP-1 I)
using Bliss-Ill. From 1973 to 1978, he rep-

resented Digital on the ANS X3J3 Fortran Standards Commit-
tee. He formed and led the development team that designed and
produced the Bliss- 16, Bliss-32, and Bliss-36 language and com-
pilers, and promoted their use in transportable and nontranspor-
table applications.

In 1978, Brender was named Digital fellow. He spent a year as
a visiting scientist in the CMU Computer Science Department
where he did research in data abstraction languages and the for-
mal semantics of programming languages. Since his return to
Digital's Corporate Research Group, he has been working with
Ada. His interests include the design and implementation of
high-level languages, especially for software development, and
software development methodology. He is a member of the
IEEE Computer Society, ACM, SIGPLAN, and SIGOPS.

Brender received the BSE in engineering sciences, the MS in
applied mathematics, and the PhD in computer and communica-
tion sciences from the University of Michigan in 1965, 1968, and
1969, respectively.

Isaac R. Nassi is a consulting engineer and
manager of the programming languages
and software engineering section of Digital
Equipment Corporation's Corporate Re-
search Group. His principal research inter-
ests are programming languages and sys-
tems. He was involved in the development
of production compilers for Bliss and
Jovial. He became active in the Ada pro-
gram in 1977 while commenting on the

phase I language designs. As a consultant to the US Army, he
helped to prepare the Army's comments on the phase II language
designs. He was appointed as one of the original Ada Distin-
guished Reviewers by DARPA in 1979, at the start of phase 111,
and has since worked closely with the Ada language design team.
A member of the IEEE Computer Society and ACM, Nassi

received his PhD from the State University of New York at Stony
Brook.

COMPUTER24

Authorized licensed use limited to: MIT Libraries. Downloaded on November 6, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

