Aerospace -
SOﬁ\Nare

Chr nnnnnnnnnnnnnnnn
rrrrrrrrrrrr

Aerospace Software Engineering
A Collection of Concepts

Edited by

Christine Anderson

U.S. Air Force Wright Laboratory
Armament Directorate

Eglin Air Force Base, Florida

Merlin Dorfman
Lockheed Missiles & Space Company, Inc.
Sunnyvale, California

Volume 136
PROGRESS IN
ASTRONAUTICS AND AERONAUTICS

A. Richard Seebass, Editor-in-Chief
University of Colorado at Boulder
Boulder, Colorado

Published by the American Institute of Aeronautics and
Astronautics, Inc., 370 L’Enfant Promenade, SW,
Washington, DC 20024-2518

American Institute of Aeronautics and Astronautics, Inc. Washington, DC
Library of Congress Cataloging-in-Publication Data

Aerospace software engineering / edited by Christine Anderson, Merlin Dorfman.
- cm.—(Progress in astronautics and aeronautics; v. 136)

Includes bibliographical references.

1. Aeronautics—Computer Programs. 2. Astronautics— Computer
programs. 3. Software engineering. I. Anderson, Christine, 1947—
—II. Dorfman, M. (Merlin) III. Series.
TL507.P75 vol. 136 (TL563) 629.1 s—dc20 [629.13'00285'53] 91-27124
ISBN 1-56347-005-5

Copyright © 1991 by the American Institute of Aeronautics and Astronautics, Inc. Printed
in the United States of America. All rights reserved. Reproduction or translation of any part
of this work beyond that permitted by Sections 107 and 108 of the U.S. Copyright Law
without the permission of the copyright owner is unlawful. The code following this statement
indicates the copyright owner’s consent that copies of articles in this volume may be made
for personal or internal use, on condition that the copier pay the per-copy fee ($2.00) plus
the per-page fee ($0.50) through the Copyright Clearance Center, Inc., 21 Congress Street,
Salem, MA 01970. This consent does not extend to other kinds of copying, for which per-
mission requests should be addressed to the publisher. Users should employ the following
code when reporting copying from this volume to the Copyright Clearance Center:

1-56347-005-5/91 $2.00+ .50

Data and information appearing in this Book are for informational purposes only. ATAA is
not responsible for any injury or damage resulting from use or reliance, nor does AIAA
warrant that use or reliance will be free from privately owned rights.

Progress in Astronautics and Aeronautics

Editor-in-Chief
A. Richard Seebass
University of Colorado at Boulder

Editorial Board

Richard G. Bradley
General Dynamics

John R. Casani
California Institute of Technology
Jet Propulsion Laboratory

Allen E. Fuhs
Carmel, California

George J. Gleghorn
TRW Space
and Technology Group

Dale B. Henderson
Los Alamos National Laboratory

Carolyn L. Huntoon
NASA Johnson Space Center

Reid R. June
Boeing Military Airplane Company

John L. Junkins
Texas A&M University

John E. Keigler
General Electric Company
Astro-Space Division

Daniel P. Raymer
Lockheed Aeronautical Systems
Company

Joseph F. Shea
Massachusetts Institute
of Technology

Martin Summerfield
Princeton Combustion Research
Laboratories, Inc.

Charles E. Treanor
Arvin/Calspan
Advanced Technology Center

Jeanne Godette
Series Managing Editor

AIAA

504 R. B. K. DEWAR

®Dewar, R. B. K., and Smosna. M. Microproc s Vi
OBt i processors, a Programmer’s View,

"Wichman, B. A., “Low-Ada: An Ada Validation Tool,” Nati .
i 4 " i t l :
Laboratory, NPL Rept. DITC 144/89, Aug. 1989. ational Physical

8“IEEE Standard for Binary Floating-Point Arithmetic,” AN :
754-1985 ed. . 1985. 8 metic, SIIEEE Standard

*Wichman, B. A., “A Note on the Use of Floating Poj t in Criti
X >, El t S, 7’
National Physical Lab. (to be published). eariLsds nalb o e
'Payne, M., Schaffert, C., and Wichman, B. A “The Lan i
: >, M., 2, , B. A uage Compatibl
Arithmetic Standard,” ACM SIGPLAN Notices, Vol. 25, pp. 5g9—§6' also pillCl\?l
SIGNUM Newsletter, Vol. 25, No. 1, pp. 2-43, Jan. 1990, dgh]

"“Interim Defence Standard 00-55, “Requirements for the Procurement of

Safety Critical Software in Defence Equi P e
undated. quipment,” UK Ministry of Defence,

12Barrett3 G.,. “Formal Methods Applied to a Floating-Point Number System,”
Oxford University Programming Research Group, TM-PRG-58, 1987. ;

Robert B. K. Dewar is a Professor and

= past Chairman of
the Computer Sci-
ence Department at
New York Univer-
sity. His fields of
interest include
real-time software
and operating sys-
tems, program-
ming languages and
. compilers, and
microprocessor architectures. He has ex-
tensive experience in the design and im-
plementation of software systems,
including a series of real-time operating
systems for Honeywell. He wrote the
backend of the Realia COBOL compiler,
and has consulted for Alsys Inc. on the
design and development of their compi-
lers, particularly for the Intel line. He has
been involved in the Ada language design
effort almost from its inception, and most
recently has served as one of the authors
of the Ada 9X Requirements Document.
He has also consulted in the area of
embedded real-time software develop-
ment, and has recently published a book
with Matthew Smosna, Microprocessors,
a Programmers View, which discusses the
CISC vs RISC debate from a program-
mer’s point of view.

Chapter 10.3

Symmetric Parallel Processing

Ilya Gertner and Ike Nassi
Encore Computer Corporation, Marlborough, Massachusetts

Symmetric parallel processing is one of the major techniques
in achieving efficient utilization of multiprocessors. Those tech-
niques have been realized in hardware for quite some time. In
software, on the other hand, this symmetric design has been
frequently overlooked in favor of simpler implementations. This
has resulted in performance penallties that in some cases undercut
even the reason for moving software to multiprocessor systems.
In order to support symmetric multiprocessing, software must be
symmetric at all levels, including the system kernel, run time
language support libraries, and user applications. This paper
describes our experience in implementing and using the symmetric
parallel software at several levels, including a UNIX kernel, Ada
run time, high-level debuggers, and performance monitors. Pre-
liminary experience indicates that many programming tools and
applications can be built with the symmetric model.

Introduction

YMMETRIC parallel processing is a technique for implementing par-

allel systems where none of the distinguishable components have an
identifiable serial component. All of the components run in parallel; oc-
casionally some of the components synchronize their computations with
each other when accessing shared resources. In contrast, nonsymmetric
processing such as master-slave is a technique where all computing com-
ponents (i.e., slaves) always ask for a permission from the master to per-
form computations. The master becomes the chief arbitrator, and a potential
sequential bottleneck, no matter how parallel the rest of the computation.

Copyright © 1990 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved.

505

506 I. GERTNER AND I. NASSI

In reality the notion of the master comes up in many environments where
resources are shared for economic reasons. We find examples of the masters
at different levels ranging from the multiprocessor hardware level where
a single bus (i.e., the master arbitrator) is shared by multiple CPUs to a
software level where users may share a high-quality laser printer (another
master) in a time-sharing environment. In all of the aforementioned cases
the final decision for accessing the shared resource is made by the master
process. There is no way to avoid using the master if we want to share
costs. ‘

Although there is no way to completely eliminate the master server, it
is extremely important to minimize the processing time of the master. In
software this is usually accomplished by postponing the request to the
master until the last possible moment. For example, one needs to reserve
the printer only when it is actually printing, and not when the printing
software is copying a file. By requesting the master too soon, one frequently
wastes resources and introduces sequential bottlenecks in the system that
could have been avoided through a symmetric design. This paper focuses
on this “postponing” of requests to the master.

Design of a symmetric shared-memory multiprocessor begins with the
design of the access to memory from all processors. There are no special
processors: All processors can access memory equally well (from the points
of view of both the user interface and response time). In addition, all
processors are equal in handling devices: Interrupts are handled according
to priority level by the first available processor; input/output (1/0) oper-
ations can be initiated by any processor. This provides the basis for a
completely symmetric environment where all user requests are balanced
against the system hardware resources. This is the main objective of the
operating system kernel and run time libraries: to provide a balance be-
tween the user workload and available system resources. No system-level
software should introduce a component that cannot satisfy those require-
ments.

Symmetric properties are often inherent in many applications. For ex-
ample, time sharing is inherently a symmetric parallel application. Multiple
users access computing resources at the same time. It can be naturally
supported on a multiprocessor. Sometimes even a single user can naturally
benefit from a multiprocessor. Consider a software development cycle: A
user iterates through the edit, compile, link, and debug steps. The edit
and compile steps typically involve multiple files. The compilation of mul-
tiple files is a naturally parallel application. In fact, today the UNIX “make”
program is the most common parallel application supported on many
multiprocessors.!-?

Inherent parallelism in an application and underlying symmetric multi-
processor hardware does not automatically ensure the best possible per-
formance. For example, bottlenecks in the file system may prevent the
previously described parallel make to scale linearly over a number of pro-
cessors that suggest the focus of this paper. How can the system software
be designed so that the degree of parallelism is limited only by the hardware
and by the nature of applications?

SYMMETRIC PARALLEL PROCESSING 507

Related Work

Although the topic of operating system support for multiprocessors has
received considerable attention in the literature, the issues of symmetry
have not been as widely reported. Many papers are concerned with the
hardware issues such as the way in which each processor accesses memory
or about low-level synchronization primitives.?

All of the preceding issues are unimportant or trivial on shared-memory
multiprocessors. For example, in developing the Multimax (_a shared-m;m—
ory multiprocessor), hardware was designed to support uniform, efficient
accesses to memory.* The same approach has also been extended to a
cluster of multiprocessors.” This eliminated any need for the software to
attempt to optimize local memory references. In addition, access to.sl.lared
memory became the main synchronization mechanism. It was trivial to
implement a variety of synchronization mechanisms, such as the mutual
exclusion locks, read-write locks, and messages.

Although shared-memory multiprocessors implemented with the bus and
caches may fail for some applications (in fact, given a particular cache
design, one can write a trivial program that breaks that cache), in practice,
we found most of the applications to have a 90-95% cache hit ratio. In
other cases we found techniques for changing applications to run efficiently
in this paradigm.® In our experiences those drawbacks are small compared
to the advantages of having a simple, efficient mechanism for synchroni-
zation and device handling. . ;

Other papers on multiprocessors deal with the issue of the multithreading
systems kernel, but leave out the issues of multithreading of run time
libraries and managing resources.”-® As a result, some of the layers are left
nonsymmetric, contributing to the sequential bottleneck of the total system.
It is the position of this paper that the most difficult part, and the largest
performance gain, is to make all system levels multithreaded and fully
symmetric; otherwise, we cannot claim to have a general-purpose parallel
processing system.

Multithreading vs Master-Slave

Given parallel applications (including naturally parallel time-sharing ap-
plications), the next step is to get the systems software to function properly
in the multiprocessor environment. One needs to protect access to all
shared data. There are basically two techniques for achieving this: mul-
tithreading and master-slave.

The master-slave approach is the easiest way to get programs to run on
a multiprocessor. It is typically applied to systems software that has been
implemented on a sequential machine. On a multiprocessor the systems
software can be protected from corruption (by multiple users running in
parallel and using the same software) by creating an additional layer, the
master of the system services, which controls access to that systems soft-
ware. The simplest control discipline is that of one master, which allows
one slave at a time to access the protected software.

Multithreading the systems software, albeit more difficult, is a more
efficient method of implementation. To multithread means to ensure that

508 I. GERTNER AND I. NASSI

ithredded
glicatign

Protect Access To the Entire Program Protect Access to Critical Sections

Fig. 10.3.1 Design trade-offs; master-slave vs multithreading.

multiple threads of control at the same time can execute the same program
safely. It essentially requires rewriting the systems software to protect
accesses to all shared data (Fig. 10.3.1).

The perforrqance measurements described later indicate the importance
of multithreading in the systems kernel. The class of user programs we are
con51der'mg are those that half of the time run at the user level and half
of the time at the system level. A typical example of such a program is
the C compiler, which is the most commonly used program in a time-
sharl.ng program development environment.! To simulate a multiuser load
multiple operations are then done in the background using a UNIX shell
script. The results are given in terms of the real time necessary to complete
all compilations (Fig. 10.3.2).

The results in Fig. 10.3.2 clearly point out the problem: The master-
slave kernel fails to scale beyond three processors, whereas the multi-
threaded kernel continues to scale for up to 12 processors. The anticipation
Ef thelse results provided the main motivation for multithreading the UNIX

ernel.
Multithreading a UNIX Kernel

The standard (sequential) UNIX code assumes that the kernel is never
preempted except for processing of interrupts. Hence, kernel data struc-
tures}do not need to be protected unless referenced by an interrupt routine
and if so, the data can be protected by locking out interrupts. This Is,
normally done by raising the processor priority level high enough to prevent
the type of interrupt from occurring. This protection is insufficient in mul-
tiprocessors where an arbitrary fragment of kernel code can be executed
concurrently on several processors. Simultaneous updates to the same data
structure can result in inconsistencies.

SYMMETRIC PARALLEL PROCESSING 509

Master Siave O.S.

Time
MultiThreaded O.S.

Ideal (no O.S. overhead)

Number of Processors

Fig. 10.3.2 Master-slave vs multithreading performance.

Ensuring consistency in a multithreading kernel is very simple: One has
to identify all data structure references that have the potential of being
cross referenced from different processors. Then one is going to introduce
synchronizers (e.g., mutual exclusion locks, called “mutex”) around all
accesses to shared data. Having accomplished this, we have the first version
of the multithreaded kernel. The hard problems begin later when one has
to tune the performance of the kernel and debug it to be deadlock-free.

Avoiding Deadlocks

Deadlock avoidance in a kernel is a classical problem that has been
described in many textbooks on operating systems. In a multithreaded
kernel (implemented with mutex locks as described earlier), the deadlock
occurs if a task T1 accesses data structure A using a mutex lock A followed
by access to the data structure using lock B. At the same time task T2
attempts to access the data structure B followed by access to the structure
A. This is a classical case of a deadlock where some tasks are waiting for
each other’s resources (resource in this case is a data structure), but since
all are waiting, none is able to release a resource.

There are basically three approaches to avoiding such deadlocks: 1)
Change the kernel code and data structures so that at no time can a task
ask for more than one consecutive mutual lock. 2) Write a high-level
synchronization function that ensures deadlock-free acquisition of two re-
sources. 3) Introduce an ordering on the set of resources (and their as-
sociated mutex locks).

Our choice has been to proceed with the third choice. We felt that this
would minimize the amount of changes in the system kernel.

The ordering of locks corresponds to a directed acyclic graph. This im-
plies that resources can be accessed only in a certain order. For example,
one could define a kernel resource so that access to the resource A is
followed by access to the resource B. If a task accesses resource B and
then attempts to access the resource A, the kernel reports an error.

510 I. GERTNER AND I. NASSI

This scheme is implemented by associating every lock with an associated
level of hierarchy (see the Appendix for the current set of values in the
header “lock.h”). The current acquired lock is stored as part of the current
task state. If the task is trying to acquire another lock, the system kernel
checks whether the lock hierarchy was violated. And, if so, the kernel
reports a fatal error (i.e., a UNIX “panic” message). In practice, this
worked surprisingly well. In three months we had a working kernel.

Performance Tuning

Having introduced locks and removed deadlocks, we had the kernel
running in parallel. Initially, we were disappointed to find out that the
“parallel” kernel ran significantly slower than the master-slave version.
We realized that much more work was needed to make the kernel run in
parallel efficiently.

Implementing an efficient kernel has always been an important issue for
any architecture. Still, on sequential architectures it was considered a lux-
ury, an afterthought, if time permitted to do some additional work. On a
multiprocessor we realized that efficient kernel is as important as correct
kernel. Otherwise, why move to a multiprocessor? Performance tuning was
clearly the next task.

One of the major decisions for every mutex is to choose between a
spinlock (busy wait) and counting semaphore (Dijkstra’s scheduling pri-
mitive). How does one choose between the two seemingly conflicting pri-
mitives? The spinlock() seems to waste processor resources, whereas the
semaphore “‘gracefully” puts a task to sleep. The performance character-
istics of the spinlock() and semaphore are also contradictory. Spinlock
requires a minimum of four instructions. In the worst case a blocking
semaphore routine call requires about a thousand instructions to put a task
A to sleep and schedule another task B that eventually wakes up task A
(directly or indirectly), which again must be scheduled and returned from
the call to the semaphore routine. Clearly, if the average time for resolving
the conflict is on the order of milliseconds, then the advice is to use sem-
aphores. If the time is on the order of tens of microseconds, then the
desired approach is to use a spinlock. It is very difficult at the design time
to decide on the optimal set of primitives.

We began with a straightforward approach: If the code looks simple
(e.g., fits in a single page), then use busy-wait; otherwise, use semaphores.
For quite some time we have been considering the idea of a combined
primitive: Spin for a while, then block. Following some experimentation
we have rejected this alternative. It turns out that OS operations are clearly
divided into two classes: data manipulation and device accesses. Device
access times are on the order of tens of milliseconds, whereas data ma-
nipulations are on the order of tens or hundreds of microseconds. Given
a process scheduling time on the order of a few milliseconds, the choice
between primitives became clear: All data manipulation should wait with
a busy lock; all device accesses should suspend.

Another design decision is the granularity of the mutex lock. What data
structure (or the code that manipulates that data structure) needs to be

! r<||

SYMMETRIC PARALLEL PROCESSING 511

protected? At one extreme, in order to ensure the maximum parallelism
possible, one wants lock around every access to a shared-memory location.
This allows for the programs to run in parallel at all unprotected memory
accesses. After some experimentation we have measured that this a.p.proach
would introduce a very large fixed overhead for entering apd exiting the
locks. Even a spinlock has a fixed overhead of four instructions. Since the
probability of processors clashing on accessing the same location is very
low, on average we gained a lot by locking at a much higher level. On the
other hand, one needs to remember that at the highest granularity of
locking, the symmetric kernel becomes the master-slave kernel!

A typical example of the trade-offs involved in choosing the right level
of granularity is demonstrated in the code fragment below that inserts an
element into the doubly linked list [e.g., a linked list of process control
blocks (PCBs); see Fig. 10.3.3]. In the example with fine granularlt.y the
locking routine is called two times (for the before and after element), with
coarse granularity the locking is called only once fpr the entire list. Al-
though the probability of clashes for the once-per-list lock increases, the
fixed overhead for calling lock and unlock decreases. Only by measuring
a running system with real workloads were we able to make those trade-offs.

In some cases the simple locking primitive is too restrictive. In particular,
the mutual exclusion primitive described earlier is a very strict primitive:
Only one processor at a time can be in the protected code section. This is
clearly too prohibitive for some applications. For example, in the file di-
rectory system we want a read-write lock that allows multiple rez}ders to
proceed concurrently. Many processes may need to read the same directory

List head
.l
lock lock lock lock $
List head
lock
o

Fig. 10.3.3 Granularity of locks; inserting elements in a list. Locking elements vs
locking lists.

512 I. GERTNER AND I. NASSI

control structure. On the other hand, the directories rar

. : ely change com-
%ir.ed to other opgratlgns. Read-write locks were designed for this pgurpose
1S again contributed to significant im d ili .
o 1 st g proved performance scalability of

Finally, some algorithms turned out to be ver i
/, SOI y awkward to parallelize.
In such situations one lock was followed by another lock, and anI(J)ther lock
and the system would panic (i.e., deadlock). In such cases we would sa§;
that the algorithm is not parallelizable, and we would search for higher-

Ada Run Time

Multithreading Ada Run Time

In general, concurrent programming languages have r i
t%l}?t ha;/ledchlarag:tergtics that are simi%ar tg thgose of oplc};lattilrrlzes;};iglngs

ey schedule threads of control, hav izati ide
e Bt iy e synchronization needs, and provide

A typical example is Ada, a language that uses tasking to su .
currency. Since Ada has been designedgwith portability ingmind E}z(())rr:l;ﬁgr
for Ad'a. comes with a run time library that supports tasking’. (Both for
portablhty. and historical reasons Ada was introduced on sequential pro-
cessors, with concurrency implemented at user level.)

An Ada run time system has properties similar to the UNIX kernel
_descrllbed earlier. It generally has been written with the single processor
in mind whefe only that processor is executing the run time system kIn
order to run in parallel we needed to multithread the run time systerﬁ.

Be_cause concurrency was designed in Ada from the very beginning and
thus is a primary part of the language, it is easier to make concurrent use
of Ada than many other languages. The abstract design of Adais that of
a large shared memory, with a potentially large number of tasks executing
concurrently within that shared memory. This is exactly the control model
of a shared-memory multiprocessor, and this similarity can be exploited
to the fullest in shared-memory multiprocessor implementations of Ada
It is also the case that one can achieve finer control over concurrency thari
Ic)z;g be done Wlt}ij sgme automatic approaches to concurrency, since the

rammer can define preci é
pro)g]; o ek precisely what the threads of control are and how
~ The general approach to implementing a concurrent Ada under UNIX
Is to share near}y the entire virtual address space. A set of UNIX processes
Is created that is dynamically mapped onto Ada tasks. The easiest mapp{ng
to implement 1s to allocate one UNIX process for every task. This is also
the least efficient method. Ada tasks carry significantly less context than
a UNIX process. In addition, Ada tasks communicate via rendezvous, a
}/iecgnﬁ:;.tglcted form of communication that can be implemented very ef-

A more complex but more efficient method is to allocate a certain num-
ber of UNIX processes that map to a much larger number of tasks. The
processes are allocated for the lifetime of the program. The number of

SYMMETRIC PARALLEL PROCESSING 513

processes is set by the run time to express the amount of parallelism that
the user wishes to exploit (i.e., it is not bound into the code of the program).

The user can thus vary the number of processes used by the program
between runs and conduct experiments to find the optimal partitioning for
various programs and input.

When the Ada run time system tries to run a task, it first sees if a process
is available to run it. If so, the process assumes the identity of the task
and executes it. If no process is available (and there is no lower priority
task that must be preempted), the task is queued on a ready queue for
execution by the next process that becomes available. In this way Ada
programs with a potentially enormous set of tasks can be written and
executed, and as processing power increases over the next few years, these
programs will automatically work on the newer, massively powerful ma-
chines without major modification (Fig. 10.3.4).

Input/Output Processing

A difference between the Ada run time system and a UNIX multipro-
cessor kernel involves the difference between UNIX processes and Ada
tasks. In general, concurrency of UNIX processes is hierarchical. The
kernel controls the sequencing of processes, and they rarely interfere with
each other, except through few, well-defined points, such as communica-
tions over pipes.

The marriage of Ada and UNIX is not without its problems, however.
For example, the Ada tasking implementation described earlier involved
a set of Ada tasks that ran on top of a set of UNIX processes. Consider
a set of tasks T1 and T2 running on top of UNIX processes P1 and P2.
Let the task T1 open a file while it is rescheduled on top of P1. Some time
later, T1, while scheduled on top of P2, attempts to read a record from
the file. The read operation fails because the process P2 has no open file
descriptor for that file. This is because P1 and P2 can share only file
descriptors that have been open during UNIX process creation time [i.e.,
UNIX fork()]. Following the creation, both processes continue on an in-
dependent execution path.

The preceding problem points to problems in the whole UNIX process
paradigm when applied to multiprocessing. In particular, the UNIX process
hierarchy does not match the model of Ada tasking. A parent process
spawns children processes and gives them a COPY of all file descriptors
(i.e., the file descriptors are not shared, but copied into the child process’s
address space). When a child gets control and allocates a new resource,
that resource is no longer shared with the other children processes (Fig.
10.3.5).

This is the problem of implementing an Ada tasking on top of UNIX
processes. This problem is not unique to Ada tasking. Any user-level
scheduler suffers from the same problem. The problem is not with this
particular implementation of Ada threads, but with the UNIX paradigm.

UNIX and other time-sharing operating systems have been designed
around the notion of protection and privacy of processes that by necessity
run on a time-shared hardware. The concern with privacy and protection
is clearly inappropriate for certain applications on a shared-memory mul-

514 I. GERTNER AND . NASSI

T

[Central Processor j

Sequential Run Time

Ada Tasks

—
m——

/";);‘;‘, N
G EFE® T
N

e e .
=1

Unix Processes

Parallel User Level Runtime

Fig. 10.3.4 Ada run time design alternatives under UNIX.

SYMMETRIC PARALLEL PROCESSING 515

Unix Process with
QOpen Shared Data

SiER

el
i
i
o,

Fails, no valid
file descriptor

Fig. 10.3.5 Ada run time I/O problem.

tiprocessor, where often it is precisely the sharing of data that is of main
interest. A parallel program that consists of a set of tightly communicating
processes (or threads) is routinely allocated to a single user.

Clearly, there is a need for a new process paradigm. The first direction
we have been experimenting with is the MACH threads model."!

MACH introduces a new structure called a task control block (TCB),
which directly addresses the machine model of the kernel. The intent is to
allow for -the existence of “lightweight” threads of control that are, in
effect, little more than virtual CPUs. These “‘threads” are the control units
scheduled by the kernel and are grouped into “tasks,” each with its own
TCB and each describing the remaining elements of the machine (memory,
I/O, etc.) for the entire set of its satellite threads.

In MACH the previously described I/O problem does not exist because
all threads point to the same set of file descriptors. Put another way, all
Ada tasks can potentially share a set of files (Fig. 10.3.6).

MACH makes the decision of sharing all resources; UNIX makes the
decision of sharing in a very special hierarchical way at the process creation
time. This seems to be an unnecessary limitation. Those limitations become
specially visible when implementing a parallel debugger. To meet those
requirements, we have been moving toward a new operating system paradigm.

Debugging Requirements

Consider the problem of an Ada debugger. The debugger wants to share
memory but does not want to share exception handlers. For example, a
floating-point exception in the application may cause the program to fail
(if the user did not provide any exception handling code), while the de-
bugger may only want to report the thread in which the exception occurred.
Some file descriptors are shared by both the debugger and application;

516

. GERTNER AND I. NASSI

File Descriptors

Task Control Block
Signal Handlers

Statstics

Fig. 10.3.6 Mach process paradigm.

other descriptors are private to each. In summary, we need a more flexible
sharing of resources than that provided by both MACH or UNIX.

Today existing debuggers are built using the UNIX process model.!2
There the debugger is allocated a new UNIX process that uses the special
system calls to manipulate the state of the application' (Fig. 10.3.7).

Although such debuggers adequately support sequential programs, in
our experience they are very limited in a parallel environment. In fact, for
quite some time we have been working on a parallel debugger that relies
on the efficient sharing of resources.'* Our experience comes from devel-
oping Parasight, a parallel programming environment that was the major
force in defining the requirements for resource management for parallel
programs.

To effectively support Parasight, we needed a new UNIX environment
that allows one to flexibly allocate and manage resources. Some of the
resources are shared between the debugger and an application; others
remain private to each.

To support those requirements we have developed a new operating sys-
tems paradigm called nUNIX." It is built on the notion of the resource
control block (RCB), as opposed to the process control block (PCB) that
is common to many operating systems.

nUNIX partitions the existing concept of a UNIX process into a new
variable-weight process and several independent system resource descrip-
tors. It defines new primitives for manipulating those resources in order
to create a new thread of execution and to selectively manage system
resources associated with it. Different from MACH, this new UNIX variant
(nUNIX) preserves the semantics of UNIX processes by considering threads
as just another variation on processes and by retaining the existing system
interfaces to them. Resources themselves are arbitrarily sharable, or not,
by each of these new processes. Surprisingly few changes are needed to
achieve this effect, especially in comparison to the requirements of par-
allelizing the kernel itself, and the design that is offered can properly be
considered as a simple extension to UNIX (Fig. 10.3.8).

SYMMETRIC PARALLEL PROCESSING 517

File Descrilptors Signal Handlers

Fig. 10.3.7 Debugging paradigms: shared vs disjoint memory.

Once the aforementioned kernel restructuring was completed, backward
compatible programming models were implemented. Implementation of
both UNIX fork() and MACH-cthread_fork() be_came trivial programs
that could fit in one page. In addition, the new 1nterfac§ p'IOVldCd the
capability for flexible sharing resources. We are only beginning to learn
the power of this flexibility.

Conclusions

Symmetric hardware is only the first and the smallest building block of
a fully symmetric parallel processing system. Many layers of system sof_t-
ware need to be implemented and modified to conform to the symmetric
model. A mistake at any layer of the systems software may mtrqduce a
sequential bottleneck (i.e., nonparallelizable code fragm;:nt) that will slow-
down scalability of the parallel program and may even jeopardize all par-
allelization efforts at other layers. o . '

This paper describes our experiences in implementing a variety of such
systems-level parallel programs. They are complex parallel programs that
have been used by many users. The programs include different versions
of the UNIX kernels, parallel Ada run time systems, and high-level de-
buggers. .

In software, multithreading appears to be the most common technique
for parallelizing all systems software. This technique was the starting point
for parallelizing both the UNIX kernel and Ada run time system. It was
only a beginning. Many more issues, such as how to avoid deadlocks, how
to tune the performance of the multithreaded kernel, and how chopse the
granularity of the locks in order to optimize the overhead for calling the
locks, are emerging. _ _ ‘

Choosing the programming model for implementing Ada tasking also
involved many trade-offs, ranging from a fully shared-memory model (as
in MACH) to a completely private memory model as in standard UNIX.
Those trade-offs were further highlighted in the design of the Ada tasking
debugger that required a more flexible resource-sharing model that is not
supported by either MACH or UNIX.

518 I. GERTNER AND I. NASSI

Disjoint Memory

Debugger Osp;:;gg Target Program

Debugger Target Program

Operating

System

Fig. 10.3.8 nUNIX process paradigm. Flexible allocation of resources.

Although many of the techniques developed appeared to be made on
an ad hoc, per case basis, we have identified some principles that occur
throughout all layers. Although the implementation techniques may vary,
we believe that the same set of issues will have to be addressed in other

systems. We are beginning to learn the principles of symmetric parallel
processing.

Acknowledgments

This research was supported by the Defense Advanced Research Pro jects
Agency ARPA Order 5875 and was monitored by Space and Naval Warfare
Systems Command under Contract N00039-86-C-0158. The views and con-
clusmn?, contained in this document are those of the authors and should
not l?e interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S.
Government. Parasight and Multimax are trademarks of Encore Computer
Corporation. UNIX is a trademark of AT&T Bell Laboratories. Ike Nassi’s
current address is: Apple Computer, 238 Main St., Cambridge, MA 02142.

SYMMETRIC PARALLEL PROCESSING 519

Appendix A: Synchronization Primitives

/* spin locks */
initmplock()
mplock()
mpunlock()

/* binary semaphores */
initmutex()

mutexlock()
mutexunlock()

/* read/write locks */
initrwlock()
deadlock()
readunlock()
writelock()

Appendix B: Hierarchy of Locks, a code fragment from the header.

/** Lock level 0 */

#define PM_RWLOCK 0 /* Read/write lock mutex */

#define MS_USCLOCK 0 /* Mass store device lock */

#define NET_ENETLOCK 0 /* Ethernet device structure lock */
#define TTY_AUXLOCK 0 /* Serial line aux struct lock */

#define TTY_.TABLOCK 0 /* Typeahead buffer lock */

#define NET_TCPTIMELOCK 0 /* TCP timer data lock */

#define SYSV_SEMLOCK 0 /* System V Semaphore lock (coarse) */

/** Lock level 1 */

#define TTY_DEVLOCK 1 /* Lock on serial line device regs */
#define NET_ENETCRQLOCK 1 /* Lock on Ethernet CRQ */
#define NET_MBUFLOCK 1 /* Lock of network mbuf pool */
#define NET_TCPSTATLOCK 1 /* Lock of TCP statistics */
#define NET_UDPSTATLOCK 1 /* Lock of UDP statistics */
#define NET_ICMSTATLOCK 1 /* Lock of ICMP statistics */
#define NET_IPSTATLOCK 1 /* Lock of IP statistics */

#define NET_RDPHASHLOCK 1 /* Lock of rdptable has table */
#define NET_SOCKREF 1 /* Socket reference count lock */
#define NET_CMDPOOLLOCK 1 /* eth_cmd_resp pool lock */
#define MS_TMO_QUE_LOCK 1 /* Masstore timeout message queue */
#define MS_SCANLOCK 1 /* Masstore pending command queue */
#define SYSV_IPCLOCK 1 /* System V IPC lock */

/** Lock level 2 */
#define TTY_ACILOCK 2 /* Lock on ACI service bitmask */

#define PM_WAITLOCK 2 /* Insure atomic process exit and */

1 e &
/** Maximum lock levels */
#define MPLOCK_MAX 10

520 I. GERTNER AND I. NASSI

References

'"UMAX 4.2 Programmer’s Reference Manual, Encore Computer Corp., Marl-
borough, MA.

*Balance Guide to Parallel Programming, Sequent, Inc., Beaverton OR, 1986.

*Russell, C., and Waterman, P., “Variations on UNIX for Parallel-Processing
Computers,” Communications of the ACM, Dec. 1987.

‘Bell, C. G., “Multi: A New Class of Multiprocessor Computers,” Science, 228,
April 1985.

°Nassi, L., ““A Preliminary Report on the Ultramax: A Massively Parallel Shared
Memory Multiprocessor,” DARPA Workshop on Parallel Architectures for Math-
ematical and Scientific Computing, July 1987.

*Wilson, A. W., “Organization and Statistical Simulation of Hierarchical Mul-
tiprocessors,” PhD Dissertation, Dept. of Electrical Engineering and Computer
Engineering, Carnegie-Mellon University, Pittsburgh, PA, Aug. 1985.

"Bach, M., and Buroff, S., “Multiprocessor UNIX Operating Systems,” AT&T
Bell Laboratories Technical Journal, Vol. 63, Oct. 1984, pp. 1733—1749.

SHamilton, G., and Code, D., “An Experimental Symmetric Multiprocessor
Ultrix Kernel,” Proceedings of the Winter USENIX Conference, 1988.

“Nassi, I., and Habermann, N., “Efficient Implementation of Ada Tasks,” Car-
negie-Mellon University, Pittsburgh, PA, TR-CMU-CS-80-103, 1980.

““Doeppner, T., “Threads— A System for the Support of Concurrent Program-
ming,” Brown University, Providence, RI, TR-CS-87-11, June 1987.

""Tevanian, A., Jr., Rashid, R., Young, M., Golub, D., Thompson, M., Bolosky,
W., and Sanzi, R., “A UNIX Interface for Shared Memory and Memory Mapped
Files Under Mach,” USENIX Conference Proceedings Summer 1987, June 1987.

?Adams, E., and Muchnick, S. S., “Dbxtool: A Window-Based Symbolic De-
bugger for Sun Workstations,” Software— Practice and Experience, Vol. 16, No.
7, July 1986, pp. 653—669.

*The Common Object File Format,” UMAX Support Tools Guide, Encore
Computer Corp., Marlborough, MA, Chap. 8.

"“Aral, Z., and Gertner, 1., “Efficient Debugging Primitives for Multiproces-
sors,” ACM/SIGPLAN ASPLOS 1989— Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, May 1989.

“Gertner, 1., Langermanz, A., and Aral, Z., ‘“Variable Weight Processes with
Flexible Resources,” USENIX Conference Proceedings Winter, 1989, June 1987.

Dr. Ilya Gertner is currently a Senior Consultant at
the Parallel Systems Division of Encore Computer
Corporation. He is one of the principal developers
of Parasight, a parallel programming environment,
and nUNIX, a variable-weight process implemen-
tation of UNIX. Dr. Gertner received a BS and MS
from Technion, Israel, and a PhD from the Univer-
sity of Rochester, where he worked on RIG, a pi-
oneering message-based distributed operating system
that led toward the development of MACH.

Dr. Ike Nassi has extensive experience in program-
ming languages and systems, computer architecture,
and distributed systems. At Encore Computer Cor-
poration, he held the post of Vice President of Re-
search, where he was also the principal investigator
for a research project sponsored by DARPA to de-
velop a general purpose shared memory multipro-
cessor capable of delivering 1000 MIPS. An early
prototype of this system was demonstrated to DARPA
in May 1989. Dr. Nassi is currently the Director of
Research and Technology for Apple Computer, Inc.

