
Secure Enterprise Services Consumption for SaaS
Technology Platforms

Yuecel Karabulut, Ike Nassi

SAP Research Center Palo Alto
USA

yuecel.karabulut@sap.com

ike.nassi@sap.com

Abstract— Over recent years there has been increased level of
discussion on utility pricing for software. The focus of these
discussions is to create new operating cost models where the unit
costs are directly tied to the business operations to which they
contribute. While creating a fine-grained operating cost model is
very important for software solutions such as SaaS, the
anticipated technology platforms will need to rely on a set of
security mechanisms in order to provide a secure and
trustworthy service consumption environment. We present an
architecture for secure enterprise services consumption
management system and a protocol for secure service
consumption for service-oriented technology platforms. Our
approach is performance sensitive and utilizes a novel
combination of asymmetric and symmetric cryptography, and
capability based access control. Access to technology platform
services is regulated based on the permissions encoded in
cryptographic capability tokens. In this paper we report a work
in progress.

I. INTRODUCTION

Today, software is increasingly being delivered on the SOA
model. SOA represents a model in which functionality is
decomposed into services, which can be distributed over a
network and can be combined together and reused to create
(composite) applications. Current license-based pricing
(perpetual licensing) for software is mainly based on per
processor or per registered user. Changes in technology (e.g.
SOA) and in usage (e.g. Internet-based vs. intranet-based) are
causing software vendors to look at other models for charging
for their software. In particular, software-as-a-service (SaaS)
customers are putting increased pressure on application
vendors to come up with more flexible pricing models that
meet their business needs. Over recent years there has been
increased level of discussion on utility pricing for software.
The focus of these discussions is to create new operating cost
models where the unit costs are directly tied to the business
operations to which they contribute. Simply put, customers
would pay for what they use. For instance, business software
vendor would set his utility price on a per-enterprise service or
business process basis, or a search engine vendor might base
his pricing on a per-search basis. While creating a fine-grained
operating cost model is very important, the real world
implementations of technology platforms offering such
models will require a set of security mechanisms in order to
create a secure and trustworthy service consumption
environment.

We argue that current service-oriented technology
platforms used to build Software-as-a-Service (SaaS)
applications need to be extended with a secure enterprise
services consumption management system which will include
at least following key components: Metering and Billing
Service, Configuration Service, License Token Service and
Security Token Service. In this document we present an
architecture and a protocol for secure service consumption.
Our approach utilizes a combination of asymmetric and
symmetric cryptography, and capability based access control
[9][10][11]. Access to platform services is regulated based on
the capabilities encoded in cryptographic capability tokens
[11].

The rest of the document is structured as follows. Section
2 discusses the problem domain. In Section 3, we outline the
high-level architecture. Section 4 discusses an overview and
detailed view of the secure service consumption protocol. In
section 5, we discuss performance and security related issues.
Finally, section 6 concludes the paper.

II. PROBLEM DOMAIN AND REQUIREMENTS

SaaS applications take advantage of the benefits of
centralization through a single-instance, multi-tenant
architecture. The emergence of SaaS as an effective software-
delivery mechanism will create many opportunities. As a SaaS
application is provided as a hosted service and accessed over
the Internet, a SaaS offering will need to have a set of security
mechanisms to keep sensitive data safe in transmission and
storage. Most of SaaS security discussions focussed on the
tenant data isolation and data encryption [13]. While
providing a secure data isolation approach is the key for the
success of SaaS solutions, it is also crucial to provide a
security solution for tenant authentication, authorization and
message level data confidentiality.

More concretely, we consider following fundamental
security requirement: The authorizers (i.e. the SaaS provider)
autonomously follow a security policy which ensures that
requested service is delivered only to appropriate requestors
(i.e. the SaaS consumer). In order to achieve this goal,
requestors have to provide evidence that they are eligible for
requested service, and authorizers have to maintain
mechanisms to inspect such evidence and to decide whether
and which services are performed. Furthermore, an authorizer
has to ensure that service is actually usable to only that
requestor which provided the appropriate credentials.

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDE.2009.150

1749

IEEE International Conference on Data Engineering

1084­4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.150

1749

IEEE International Conference on Data Engineering

1084­4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.150

1749

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

III. HIGH-LEVEL ARCHITECTURE

We assume at least following main actors in a SaaS
environment:

• SC – Service Consumer

• SP – Service Provider
For generality we assume that SP provides and maintains

an Enterprise Service Repository (ESR), a Service Registry
(SR), and corresponding service implementations in different
Backend Systems (BS). ESR is a central repository in which
service interfaces and enterprise services are modeled and
their metadata is stored. SR constitutes yellow pages of
services. It supports publishing, classifying and discovering
services.

SP hosts various BSs and a central Enterprise Services
Consumption Management System (ESCOMAS). It includes
following key components, as illustrated in Figure 1:

• CS – Configuration Service: Supports the
configuration of contracts, tariff plans and pricing
rules. The CS is used by the Service Level
Agreement (SLA) administrator.

• MBS – Metering and Billing Service: Calculates
charges and associates each charge with an account.

• LTS – License Token Service: Provides functionality
for issuance and validation of cryptographic license
tokens.

• STS – Security Token Service: Provides functionality
for issuance, exchange, and validation of
cryptographic tokens.

Figure 1. High-level ESCOMAS Architecture

The BS hosts service implementations and a security

engine which is responsible for handling BS’s all security
related operations such as access management and encryption.

We make following assumptions regarding the underlying
security infrastructure:

• Each entity (SC, LTS, STS and BS) is represented by
(one of) its public key(s)1.

• SC, LTS, STS and BSs have the required security
mechanisms which provide asymmetric and
symmetric cryptography operations.

1 It is often thought best to use separate asymmetric key pairs for encrypting
and signing. For the sake of simple presentation, we assume that each entity
uses the same key pair for encrypting and signing. A commercial
implementation of our proposal could use separate key pairs for the
mentioned purposes.

• STS and BSs are able to grant capability tokens and
to provide other operations associated with the
processing of capability tokens.

• Each BS follows a security policy that is expressed in
terms of capabilities.

IV. SECURE ENTERPRISE SERVICES CONSUMPTION PROTOCOL

In this section we present the Secure Enterprise Services
Consumption (SESCO) protocol. As discussed in Section 1,
we use a combination of asymmetric and symmetric
cryptography. Due to performance reasons we limit the use of
asymmetric cryptography and mainly use faster symmetric
cryptography. Asymmetric cryptography is only used for
initial authentication step and Enterprise Service request step,
as discussed below.

A. Notation

SC: Service Consumer
SC: The id of the Service Consumer
SP: Service Provider
SR: Service Registry
LTS: License Token Service
LTS: The id of the License Token Service
STS: Security Token Service
STS: The id of the Security Token Service
BS: Backend System
BS: The id of the Backend System
ES: Enterprise Service
ES: The id of the requested Enterprise Service
CA: Certification Authority
CA: The id of the Certification Authority
MBS: Service Metering and Billing Service

 LN: Unique Service Consumer License Number
LT: License Token

 CT: Capability Token
 DT: Delegation Token

(PubKP, PrivKP): Public/Private key pair of the principal
P
PubKCertP: Public key certificate of the principal P.
SecKP1-P2: Symmetric key shared by the principals P1 and
P2
{m}SecKP1-P2: The encryption of message m with
symmetric key SecKP1-P2 which is shared by the principals
P1 and P2.
{{m}}PubKP: The encryption of message m with public
key PubKP
[m]PrivKP: The digital signature of message m with
private key PrivKP which belongs to principal P.

B. Basic SESCO Protocol Overview

The basic SESCO protocol consists of following phases
(see Figure 2):

• Capability delegation phase (BS  STS)

• Authentication & License Token request phase (SC
 LTS)

• License Token delivery phase (LTS  SC)

• Capability Token request phase (SC  STS)

175017501750

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

• Capability Token delivery phase (STS  SC)

• Enterprise Service request phase (SC  BS)

• Service Result delivery phase (BS  SC)

• Service Metering phase (BS  MBS)















































Our protocol assumes that SC and SP communicated over
a secure channel and signed a SLA which includes the
contractual details (e.g. subscription model) regarding the
usage of Enterprise Services.

Each time a Backend System BS registers an Enterprise
Service at the Service Registry, the BS issues a Delegation
Token to the Security Token Service STS. The Delegation
Token grants the STS the authority to delegate the encoded
capabilities to eligible Service Consumers. The Delegation
Token is signed by the private key of the Backend System.
Instead of issuing Delegation Tokens for individual Enterprise
Services belonging to BS, the BS can also issue a collective
Delegation Token which encodes a collection of registered
Enterprise Services. An Enterprise Service is uniquely
identified by its URL.

The Service Consumer’s goal is to be able to access
Enterprise Services provided by Backend Systems. For this
purpose a Service Consumer needs to prove to a Backend
System that Service Consumer owns capabilities which
authorize him to access requested Enterprise Services. This is
done by obtaining a License Token from a License Token
Service and then presenting this to a Security Token Service
in order to obtain a service specific “Capability Token”, the
credential that Service Consumer uses to prove Backend
System that Service Consumer is eligible to access an
Enterprise Service. The Service Consumer can now use his
Capability Token and invoke Enterprise Services, which are
encoded in his Capability Token. Upon receiving the

Capability Token and other required data (such as an
encrypted timestamp as an authenticator) from the Service
Consumer, the Backend System verifies the received
Capability Token and these data. In the positive case, the
Backend System executes the requested Enterprise Service
and sends the computed result back to the Service Consumer.
As shown below, in our protocol, any interaction between two
principals is encrypted with the symmetric session keys shared
between those principals.

A License Token encapsulates a symmetric key (Service
Consumer session key) intended for secure communication
between Service Consumer and Security Token Service when
applying for service specific capability tokens. The License
Token also includes other information such as Service
Consumer’s unique id. The contents of the License Token are
encrypted with a symmetric key shared between the Security
Token Service and the issuing License Token Service.

A Capability Token is a digitally signed credential that
expresses that the owner of the holder public key has a
possibly conditional permission to access an Enterprise
Service within a given validity period.

C. Detailed View of the SESCO Protocol

In this section we provide an elaborated view of each
protocol phase discussed above and depicted in Figure 2.

In the SESCO protocol, SC, LTS, STS and BS possess
independent public/private key pairs, (PubKSC, PrivKSC),
(PubKLTS, PrivKLTS), (PubKSTS, PrivKSTS), and (PubKBS,
PrivKBS), respectively. We assume that at least the principals
SC and LTS hold public key certificates PubKCertSC and
PubKCertLTS issued by certification authorities CA1 and CA2,
respectively. These certificates are used to testify the binding
between each principal (i.e. SC and LTS) and its purported
public key. In our protocol, we assume that digital signatures
are unforgeable.

We assume that LTS and STS already share a symmetric
secret key. We also assume that STS and each BS share a
symmetric secret key, and exchanged each other public key
over a secure channel. As LTS, STS and BSs are hosted in the
same SP’s security realm, we assume that there is symmetric
key distribution infrastructure within this security realm.

1) Capability delegation phase

In this phase, as illustrated in Figure 3, the BS grants a
delegation token to the STS, the content of which roughly
means “STS can speak for the issuing BS, the owner of the
Enterprise Service”. For the sake of simplicity we assume that
STS and BS already exchanged each other’s public key over a
secure channel. The backend system BS generates a
timestamp 2 tstampBS with his local clock and issues a
delegation token DTBS-STS to STS. The BS encrypts the

2 To prevent replay attacks, steps must be taken to ensure the freshness of
messages. Common techniques include using nonces and/or timestamps. In
order to use timestamps, the receivers’s clock and sender’s clock need to be
fairly synchronized. We also make an assumption about fairly synchronized
clocks when validity time periods are specified in tokens.

175117511751

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

sequence of BS’s id BS and tstampBS with the symmetric key
SecKSTS-BS shared between STS and BS. This sequence will
be used as authenticator by the STS. The BS also encrypts the
delegation token with SecKSTS-BS. Th BS then sends both
encrypted message parts to STS. The delegation token DTBS-

STS, signed by BS’s private key PrivKBS, consists of following
fields:

Figure 3. Capability delegation phase

• Issuer The BS public key PubKBS that is delegating
the authority to grant authorization to eligible service
consumers.

• Holder The STS public key PubKSTS that is
receiving the authority to grant authorization to
eligible service consumers.

• Capabilities A set of unique identifiers, each of
which represents the unique address (e.g. URL) of an
Enterprise Service whose implementation is hosted
by the backend system.

• Validity A time period during which the holder is
allowed to grant authorizations to eligible service
consumers.

2) Authentication & License Token request phase
delivery phase

In the Authentication & License Token request and delivery
phases the principals SC and LTS perform following steps
(see Figure 4):

Figure 4. Authentication & License Token request and delivery phase

• The service consumer SC generates two nonces
nonce1, nonce2 and a timestamp tstampSC.

• SC then sends a request <PubKCertSC, [tstampSC,
nonce2]PrivKSC, SC, LTS, nonce1> to LTS and
applies for a License Token LT. The request consists
of following parts:

o PubKCertSC: SC’s public key certificate
o [tstampSC, nonce2]PrivKSC: SC’s local time

tstampSC and a nonce nonce2, signed by
SC’s private key PrivKSC.

o SC: SC’s id
o LTS: LTS’s id
o nonce1: a nonce generated by SC

• The LTS responds by generating a fresh key SecKSC-

LTS for use between SC and LTS, and another fresh
key SecKSC-STS for use between SC and STS, and a
timestamp tstampLTS, containing LTS’s local time.
The LTS then sends the following response to SC:
<{{PubKCertLTS, [SecKSC-LTS, SC,
nonce1]PrivKLTS}}PubKSC, SC, LT, {SecKSC-STS,
tstampLTS, STS, nonce1}SecKSC-LTS>. The response
consists of following parts:

o {{PubKCertLTS, [SecKSC-LTS, SC,

noncei]PrivKLTS}}PubKSC: LTS builds the

sequence SecKSC-LTS, SC, nonce2 and signs

this sequence with his private key PrivKLTS.

The LTS then encrypts a message with the

public key of LTS, where the message

contains LTS’s public key certificate

PubKCertLTS and the signature of the

signed sequence in the previous step. This

part of LTS’s response guarantees integrity

protection as SC’s name SC and nonce2

(which was generated by SC) appears inside

a component signed by LTS. This defends

175217521752

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

against a man-in-the-middle attack since SC

can verify that the LTS generated the

received License Token for SC and not for

another principal. The presence of the nonce

nonce1 uniquely identifies which of the

requests of SC this reply corresponds to.

Alternatively, the LTS could have also

included nonce2 in the signed sequence.

Important here is to include a nonce

generated by SC.

o SC: SC’s name

o LT: License Token issued by LTS for SC

and encrypted with a long-term symmetric

key SecKLTS-STS shared between LTS and

STS. LT contains SC’s id (name) SC, SC’s

network address, SC’s license unique

license number, service subscription type

(e.g. annual, monthly, one-time), license

validity period, and the SC-STS session key

SecKSC-STS.

o {SecKSC-STS, tstampLTS, STS,

nonce1}SecKSC-LTS: This part contains the

session key SecKSC-STS for use between SC

and STS, LTS’s local time tstampLTS, the

name of the token service STS, and nonce1

generated by SC, and encrypted with the

symmetric key SecKSC-LTS shared between

SC and LTS for message confidentiality.

3) Capability Token request and delivery phase

In the Capability Token request and delivery phases the
principals SC and STS perform following steps (see Figure 5):

• The service consumer SC browses 3 the Service
Registry and retrieves 4 the URL of the Enterprise
Service, represented by ES.

• The service consumer SC generates a nonce nonce3
and a timestamp tstampSC.

• SC sends a request <LT, {SC, tstampSC}SecKSC-STS,
SC, ES, nonce3> to STS and applies for a Capability
Token which grants SC the authorization to invoke
an Enterprise Service represented by ES. SC’s
request is composed of following parts:

o LT: SC’s License Token issued by LTS.
o {SC, tstampSC}SecKSC-STS: SC’s name SC

and local time tstampSC encrypted with the
session key SecKSC-STS.

3 Note that this step is most probably automated by using a service discovery
process.
4 If a selected service constitutes a composed service consisting of at least two
services, only the URL of the composed service will be included into SC’s
service shopping cart.

o SC: SC’s name
o ES: The id of the requested Enterprise

Service
o nonce3: a nonce generated by SC

• Upon receiving SC’s request, the STS decrypts LT
using the SecKLTS-STS secret key. This gives STS the
SC-STS session key SecKSC-STS.Using this key the
STS decrypts the message part {SC,
tstampSC}SecKSC-STS and retrieves the combination
of SC and tstampSC, which is the authenticator part
of SC’s request. The STS grants a Capability Token
CTSTS-SC. The STS then sends the following response
to the SC: <SC, {SecKSC-BS, DTBS-STS, CTSTS-

SC}SecKSTS-BS, {SecKSC-BS, ES, nonce3}SecKSC-STS>.
This response is composed of the following message
parts:

Figure 5. Capability Token request and delivery phase

o SC: SC’s id
o {SecKSC-BS, DTBS-STS, CTSTS-SC}SecKSTS-BS:

SC-BS session key SecKSC-BS, a Capability
Token and a Delegation Token, encrypted
with the symmetric key SecKSTS-BS shared
between STS and BS. The Capability Token
CTSTS-SC expresses a possibly conditional
permission to access an enterprise service.
The CTSTS-SC is signed by STS using
PrivKSTS and includes following fields:

 Issuer: The public key PubKSTS of
the issuing STS.

 Holder: The public key PubKSC of
the SC (which now acts as the
holder of the capability).

 Capabilities: The id ES of the
granted enterprise service.

 Validity period: A time period
during which the holder is allowed

175317531753

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

to access the granted enterprise
service.

 Service Consumer Id: The id of
the SC.

 Service Consumer network
address: The network address of
the SC.

 Service Consumer license
number: The unique service
consumer license number LN.

o {SecKSC-BS, ES, nonce3}SecKSC-STS: SC-BS
session key, the id of the granted Enterprise
Service and a nonce, encrypted with the
session key SecKSC-STS.

4) Enterprise Service request phase and Service Result
delivery phase

Upon receiving the response in the Capability Token delivery
phase, the SC has now enough information to authenticate
itself to BS and prove that he holds a capability which
authorizes him to access an enterprise service. In this phase
SC and BS perform following steps (see Figure 6):

• The service consumer SC generates a timestamp
tstampSC.

• The SC then sends the following request to BS:
<{SecKSC-BS, DTBS-STS, CTSTS-SC}SecKSTS-BS,{SC,
tstampSC}SecKSC-BS>. The first part of the message
is from the previous phase (see Figure 5) and
contains the SC-BS session key SecKSC-BS, the
Delegation Token DTBS-STS and the Capability Token
CTSTS-SC, encrypted with the symmetric key
SecKSTS-BS shared between STS and BS. The second
part of the message is an authenticator which
contains SC’s id SC and a timestamp tstampSC,
encrypted with the session key SecKSC-BS.
The BS decrypts the first part of the message from
the previous step using the symmetric key SecKSTS-BS
to retrieve the SC-BS session key SecKSC-BS, the
delegation token DTBS-STS and the capability token
CTSTS-SC. To determine whether SC’s request for a
protected enterprise service should be honored, the
BS verifies the request’s “proof of authenticity” and
“proof of authorization”. The proof of authenticity is
the authenticator which contains SC’s id SC and a
timestamp tstampSC encrypted with the session key
SecKSC-BS. The proof of authorization is a token
chain which consists of DTBS-STS and CTSTS-SC. To
verify the proof of authorization, the BS checks
whether the token chain constitutes a chain of
authorization originating from the BS himself. For
this purpose the BS performs following steps: The
BS verifies the signature and validity period of the
Delegation Token. After a positive evaluation of the
Delegation Token, the BS then checks whether
CTSTS-SC is signed by an issuer who is also the holder
of the DTBS-STS. In the positive case the BS checks
whether the capability “to invoke the enterprise

service ES” is included in the capabilities encoded in
the delegation token DTBS-STS and whether the
validity period in the capability token CTSTS-SC is
within the range of the validity period contained in
the delegation token. In the positive case the BS
issues a new capability token CTBS-SC signed by the
private key PrivKBS of the BS. The new capability
token includes following fields:

o Issuer: The public key PubKBS of the BS
o Holder: The public key PubKSC of the SC
o Capabilities: The id ES of the granted

enterprise service. This is calculated by
computing the intersection of the
capabilities included in the delegation token
and the capabilities contained in the
previous capability token CTSTS-SC.

 
















Figure 6. Enterprise Service request phase and Service Result delivery phase

o Validity period: A time period during

which the holder is allowed to access the
granted enterprise service. This validity
period is calculated by computing the
intersection of validity periods contained in
the delegation token and the validity period
contained in the previous capability token
CTSTS-SC.

o Delegation bit: If this bit is set to true, this
means that the Service Consumer is

175417541754

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

authorized to delegate the encoded
capabilities to another principal. Otherwise,
the Capability Token can only be used by
the Service Consumer which possesses the
private key corresponding to the encoded
public key PubKSC. The default value of
this bit is false.

• The BS sends the new capability token CTBS-SC and
the timestamp tstampSC found in the SC’s
authenticator plus 1, encrypted with the session key
SecKSC-BS. With this response the BS grants
authorization via capability token CTBS-SC, confirms
his true identity and willingness to serve the SC.

• The SC decrypts the capability token CTBS-SC and
confirmation using the SC-BS session key SecKSC-BS
and checks whether the timestamp tstampSC is
correctly updated. If so, then the SC can trusts the BS
and can start submitting services requests to the BS,
where each service request contains the id of the
requested enterprise service and the corresponding
capability token, encrypted with the session key
SecKSC-BS.

• Upon receiving the service request, the BS decrypts
the request by using the shared session key, verifies
the included capability token. In the positive case, the
BS executes the requested enterprise service
(operation). The BS encrypts the result with the SC-
BS session key and returns the encrypted message to
SC.

Figure 7. Service Metering phase

5) Service Metering phase

Upon successful submission of the computed service result in
the previous phase, the BS informs the Metering & Billing
Service MBS about the consumption of the Enterprise Service
ES by the Service Consumer SC. For this purpose, the BS
sends the following message to the MBS (see Figure 7):
<{SC, LN, ES, tstampBS}SecKBS-MBS>. The message contains
the id of the Service Consumer, the SC’s license number, the
id of the consumed Enterprise Service, and BS’s local time.
The message is encrypted with the long-term symmetric key
SecKBS-MBS shared between BS and MBS. Upon receiving the
message, the MBS decrypts the message and checks the
timestamp.

The MBS then updates its records about the usage of the
service by the given Service Consumer. Depending on the
agreed service subscription type (e.g. monthly, annual), the
MBS sends a bill to SC and asks him to pay for the consumed
Enterprise Service.

V. PERFORMANCE CONSIDERATIONS

Threats can arise at many different points in modern
networked systems and compromise one or more security
dimensions, including confidentiality, integrity and
availability. Our approach utilized a combination of
symmetric cryptography and public key cryptography. The
latter requires a public key infrastructure. Neither public key
cryptography nor public key infrastructure comes for free.
Adding cryptographic mechanisms and procedures to
applications and systems does not come inexpensively.
Security increases the total cost of computer-system
ownership. Security is about trade-offs, rather than absolutes,
and that we should strive for good-enough security, not for
more security than necessary [1]. We limit the usage of public
key cryptography due to performance reasons. Symmetric key
encryption is orders of magnitude faster than public key
encryption. For example, encrypting a 128-byte block using a
public key of 512 bits takes 3.5 milliseconds on a Pentium-II
266 MHz3 whereas symmetric key encryption using AES
takes less than one microsecond on the same machine [2].
Therefore, our approach exploited a hybrid scheme by
amalgamating the convenience of asymmetric cryptography
with the efficiency of symmetric cryptography.

Here are some thoughts on some issues which will have
impact on the security and performance of a real-world
implementation of our protocol:

• Longer keys provide an increased level of security
but at a performance cost. Bruce Schneier [3]
indicates that, a public key of 1,280 bits should be
sufficient to protect against attacks from individuals,
but a 1,536-bit key will be needed to protect from
attacks originated in large corporations. A 2,048-bit
key would be the best protection against attacks from
the government. Each of these selections carries a
certain performance cost. Therefore, when
implementing our approach, a careful quantitative
analysis of the performance impacts of security
protocols must be combined with an analysis of
potential threats so that good-enough security
mechanisms are deployed for each situation.

• For both security and performance reasons, most
digital signature algorithms specify that only the
digest of the message be "signed", not the entire
message. Our protocols assume that a real-world
implementation of our approach would utilize such
digital signature algorithms.

• Intel [4] provides cryptography library functions
which are optimized for performance on the Itanium
processor family. This library functions may be
utilized for an implementation of our approach.

175517551755

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

• When processing cryptographic functions, hardware
modules [4] may be used because they are more
secure and provide higher performance than software
security modules. Hardware modules are optimized
to generate the random numbers for encrypting and
decrypting keys and messages and producing keys
and hash values.

Note that our solution may not require a new public key
infrastructure. Application vendors strive to build public key
infrastructures for realizing their next generation Single-Sign-
On solutions based on industry standards such as SAML [7],
WS-Trust [8]. Our architectural components such as STS rely
on such standards and, therefore, may utilize these existing
security infrastructures like Kerberos [6].

VI. CONCLUSIONS

To best of our knowledge, this is the first paper focusing on
authentication and authorization for SOA based SaaS
applications. We presented an architecture and a security
protocol for secure enterprise services consumption for
service-oriented SaaS technology platforms. Our approach
utilizes a combination of asymmetric and symmetric
cryptography, and capability based access control. According
to our approach, access to platform services is regulated based
on the permissions encoded in cryptographic capability tokens.
We argue that our approach can be used as a reference
proposal for real-world implementations by software vendors,
although the real-world implementations may need to modify
our protocol and architecture slightly, depending on the
existing capabilities of the technology platforms and

envisioned industry standards such as SAML and WS-Trust,
and supported security protocols like Kerberos. This is a work
in progress. We plan to validate our approach by developing a
research prototype.

REFERENCES

[1] R. Sandhu. Good-Enough Security, IEEE Internet Computing, vol. 7,
no. 1, 2003, pp. 66–68.

[2] B. Schneier et al. Performance Comparison of the AES Submissions,
Proc. 2nd AES Conf., Nat’l Inst. Standards and Technology, 1999, pp.
15–34;

[3] B. Schneier. Applied Cryptography, 2nd ed., John Wiley & Sons,
1996.

[4] http://softwarecommunity.intel.com/articles/eng/3443.htm
[5] http://en.wikipedia.org/wiki/Hardware_Security_Module
[6] B. Clifford Neuman and Theodore Ts'o. Kerberos: An Authentication

Service for Computer Networks, IEEE Communications, 32(9):33-38.
September 1994.

[7] SAML. http://saml.xml.org/
[8] WS-Trust. http://docs.oasis-open.org/ws-sx/ws-trust/200512
[9] Y. Karabulut. Secure Mediation Between Strangers in Cyberspace,

Dissertation Thesis, 2002, https://eldorado.uni-
dortmund.de/bitstream/2003/2560/2/karbulut.ps.

[10] C. Altenschmidt, J. Biskup, U. Flegel and Y. Karabulut, Secure
Mediation: Requirements, Design and Architecture, Journal of
Computer Security, Volume 11, Issue 3, March 2003.

[11] D. Clarke, J.-E. Elien, C. Ellison, M. Freddette, A. Morcos, R. R.
Rivest, Certificate Chain Discovery in SPKI/SDSI, Journal of
Computer Security, Volume 9, Issue 4, January 2001.

[12] J. Altmann, Integrating PKI with Kerberos, 5th Annual PKI R&D
Workshop, Gaithersburg, MD, USA, April 2006.

[13] F. Chong, G. Carraro, R. Wolter. Multi-Tenant Data Architecture. June
2006. http://msdn.microsoft.com/en-us/library/aa479086.aspx

175617561756

Authorized licensed use limited to: Isaac Nassi. Downloaded on June 7, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

