THE LIBERTY NET: AN ARCHITECTURAL OVERVIEW

I. NASSI

ONTEL Corporation
250 Crossways Park Drive

Woodbury, NY

11797

(516) 364-2121

Abstract

This paper presents an-architectural overview of
an operational local area network of workstations
and servers. The relationship among capabilities,
encryption, and authentication is explored in
detail. The concepts of ports, referential
transparency of ‘network communication, and
kernels as .processes are discussed,

Introduction

The Liberty Net project is an attempt to
investigate several architectural components of a
general purpose local area network of personal
computers and shared central resources. Rather
than tailoring the system for a specific
environment, such as an office, we assumed an
environment that was heterogeneous both in
function and in physical configuration. Thus, it
is possible in the Liberty Net to connect
workstations that are economically well matched
to the function to be performed without being
constrained by preconceived hardware
configurations. On the Liberty Net, we expect
to see secretarial workstations, programmer
workstations, electronic mail workstations, teletex
stations, and timesharing systems, as well as
shared resources such as file servers, high quality
document preparation facilities, a central post
office, gateways to other networks, and network
monitoring and control nodes.

Because of the requirement for a heterogeneous
system and the desire to support a network
configuration "that could rapidly change, we chose
to make it possible for each node to be
reasonably autonomous. That is, each node is
responsible for some limited set of functions, and
if necessary it can then negotiate with other
nodes for required services, Thus, there is a
requirement for establishing a basis for that
negotiation that is secure and can bhe
implemented on a variety of computers, Further,
we felt that "referential transparency"”, the
property of shielding a communicating process
from the knowledge of the location of the
process it was communicating with, would provide
additional flexibility in partitioning multiple
process programs on physical’ systems,

CH1796-2/82/0000/0099$00.75©1982 IEEE

99

Interaction among processes in the Liberty Net is
accomplished by means of message passing.
Associated with each conversation is a client,
which initiates the transaction, and a server
which responds. Clients can simultaneously be
servers for other transactions, and vice-versa.
Clients and servers might be implemented as
single processes, but can often consist of a
number of cooperating processes as well.

The method of interprocess communication is via
ports, and is described in the next section. The
extension of the port model across the network
is accompljshed by means of a "net server"
process, whi¢h is described next. The means for
naming services and authenticating clients and
servers is then defined, and finally the current
implementation is discussed.

Ports

Following the ACCENT system,! the principal
method of interprocess communication {IPC) is
via "ports". A port, as implemented on a
physical node in the lLiberty Net, is a protected
kernel object that is known to a process by
means of a local name, i.e. a capability.
Processes send and receive messages on ports.
Messages themselves can contain ports as
components. Possession of a capability for a
port is an implicit right to send messages to that
port, and only processes that have that right can
exercise it. ‘

When a port P is sent in a message, the process
receiving the message automatically receives the
right to send messages to P. At most one
process can receive messages from P and, unlike
ACCENT, that right cannot be transferred.

To insure that a process only sends and receives
from the proper Ports, the actual port data is
kept by the kernel in a per process table. A
process then represents the port as an integer
index into its port table. Thus, when the kernel
receives a request from a process to perform an
operation on a port, it must translate the
specified local name into a port. That
translation, although quite simple, is a function
of the process making the request. When a port
is passed in a message, translation is also
required. For example when process A sends
port 17 to process B, B receives a port which it
might refer to as port 42,

y\
In order to efficiently perform local name

translations, all messages must have a well
defined structure known to the kernel. In our

system all ports can be discovered by a self

describing message format, without having to
parse each message individually. Generally, all
communications with the kernel, other than
sending and receiving messages, are handled by
message passing; the kernel can thus be viewed
as a distinguished process.
the kernel, analogous to system calls on other
systems, are used to manage process and memory
resources for that node. Recause communication
with the kernel is controlled by message passing,
the structure permits processes on one node to
control processes on another node, and to act as
a surrogate kernel in a straightforward way.

A description of the operations on ports appears
in the Appendix.

Net Server

Ports as described in the preceding section only
work on a single node. Ports can be extended
transparently across a network (i.e. the property
of referential transparency) by the following
method. The net server is a. process running on
each node. Its purpose is to convert interprocess
communication on the node into interprocess
communication over the network, while
maintaining the port abstraction. In order to
accomplish this, a change in the representation
for ports is needed to manage the port name
space in the absence of a centralized control. In
contrast to the operating system. kernel, which
generally uses hardware protection modes, the
net server relies on encryption as a means to
provide a secure port abstraction.

We make the assumption that each physical node
has an address, and that at each. physical node
there are a set of socketsZ The network
representation of a port is a triple, (N, S, K),
where:

N is a node number
S is a socket number
K is an encryption key

The net server maintains a table of ports and,
like the kernel, performs a mapping of local port
names to their network representation, and the
inverse function. The encryption key associated
with a port is the key used to.encrypt all
messages sent to the port, and to decrypt all
messages received on the port. Since all
network messages on the Liberty Net are sent to
ports, all Liberty Net network messages are
.encrypted.

There are two kinds of operations performed by
the net server. First, messages can be received
on a network socket; these will be decrypted and
forwarded to the corresponding local port.
Second, messages will be received on local ports;
these must be encrypted, and sent on the
corresponding network socket. .

These messages to -

-for the port in the internal table.

Ports can be sent in messages. When the net
server receives a message containing ports on a
local port, send rights to those ports must be
transmitted. over. the .network. If after checking
its internal ‘tables the net server determines that
this is the first time it has seen this port, a
network address for the port is allocated, an
encryption key is allocated, and an entry is made
This entry
contains the encryption key, the node and socket
addresses, and the name of the local port. The
message is modified so that the network
representation of the port that is being sent in
the message is substituted for the name of local
port, Note that the newly‘allocated key is being
sent embedded within a message, and so is itself
encrypted under .another key, namely. the key of
the port- to. which it.is.being sent. ... -

N
f

Just as ports can be, sent.in. messages, ports can
be received in messages as well,.- When a
message containing ports .is received on a
network socket, the .table .is again consulted. In
this situation, send rights to the ports contained
in the message are being received. If the
network address already appears in the table
there is already a local port; the name of the
local port is substituted for. the network port and
the message forwarded to its destination. If the
network address is not found in.the table, it is
entered along with the encryption key that, was
passed. A local port is created, and entered in
the table as the surrogate of the network port.
The internal table contained in the net server is
then modified by adding this port to.the set of
local ports on which it expects. to receive
messages. '

The effect of. these translations, and the
embedding of encryption keys in messages results
in a multi-level key distribution scheme, in
contrast to the approach of4,

Ports can be deallocated implicitly by .process
completion or by a call to an .explicit port
deallocation service. In either case, this raises
the possibility of a server becoming stuck in an
infinite wait (e.g.. on a port that no, longer
exists). Requiring that.all waits have time out
periods is not a good solution to this problem
because .of .the difficulty of establishing an
appropriate. timeout period .in. an .internet
environment, To solve this problem . we, have
introduced .a NO_SENDERS exception that is
raised when a process is waiting for.a .message
on a port, and there are no senders.to that port.
The excepnon is raised in_the context of _the.
receiving process after all send‘,nghts ‘have
expired, and all messages to that port_have been
received, This exception is used in a net.server
to effect clean up of its port correspondence
tables. When the net server .detects this
condition for an outgomg surrogate port, the net
server deallocates its_local. port, and using the
correspondmg network address, forwards the
exception over ‘the net to 'the, net server on the
other end, at Wthh , point the remote net server
deallocates its correspondmg local port It is

easy to imagine the NO_SENDERS exception
rippling back through the network causing ports
to be cleaned up when appropriate,

In summary, processes send messages to the ports
of other processes. If the processes are on
different nodes, the net servers on both the local
and remote ports cooperate to effect the
transfer in a way that is transparent, except for
timing delays, to both the sender and to the
receiver,

Authentication

Central to any resource control scheme is the
need to. accurately identify the source of service
requests. In a local area network such as this
one, there are two choices: each server
implements its own authentication scheme, or a
single authentication scheme is mandated for the
entire network. The latter approach was chosen
for the Liberty Net; however, each server is free
to refine the basic scheme according to its need,

In this scheme there is a single, trusted,
distinguished server known as the authentication
server’. This has the disadvantage of introducing
a potential single point of failure for the entire
system. However, as will be seen, its structure
is very simple and could be implemented on a
dedicated, highly reliable microprocessor.
Alternatively, it could reside on a node like the
central. file server, which if unreliable has a
major impact on the successful operation of the
system anyway.

This authentication server differs from the one
described in* in two ways. First, it does not
supply encryption keys or nonce identifiers.
Encryption keys are provided by the network port
model. Second, it combines the functions of
authentication and name services”? into a single
service. It serves to register a service,
deregister a service, service a "request for
service", and provide for network log in. Fach
of these will be described in turn.

Assume for now that the authentication server
maintains a single port called a "private port",
for each independent cooperating set of processes
that require an identity (for example, all the
processes belonging to JOE). We will call this
set of processes a "citizen" of the network, and
the method by which these ports are initially
established will be defined as part of the
network log in function.

When a server wishes to advertise its services on
the network, it sends a message to the
authentication server on the server's private port,
indicating that it wants to register some service
by name, and passes the authentication server a
port to be used on which to receive requests.
The server trusts that the authentication server
will never share send rights on that port.

The authentication server registers that name for
the server by maintaining a correspondence table
of services (represented by their names) and the

101

ports that were passed with the service
registration messages. Note that the server's
identity is implicit; the act of receiving the
request on a port associated with the server is
enough to guarantee that either it was the server
who sent the request in the first place, or else
it was someone who was appointed by the server.

Deregistration of a service simply removes the
corresponding table entry.

A client who wishes to make use of a service
sends a service request message to the
authentication server; the message contains a
port (the "reply port") on which the client
expects to receive a reply message containing a
port on which to request services. The
authentication server can identify the client
implicitly by receiving a message on the private
port associated with the client. The
authentication server looks up the named service.
If the service isn't found, the client is so
informed on the reply port on which the client
expects a response. If the named service is
found, the authentication server sends a message
to the port associated with the service,
containing the identity of the client, the client's
request, and the reply port. The server receives
the message from the authentication server, and
can assume the request was from the
authentication server because the server trusts
the authentication server not to grant any other
citizen send access to this port. If the server
wishes to grant service to the client, it allocates
and sends a port, the "service port", to the
client's reply port. The service port is the one
on which the client can talk to the server. If
the server decides not to grant service, it also
can inform the client on the client's reply port,
Any messages subsequently received on the
service port can be assumed by the server to
have either come from the client, or a process
the client appointed as a surrogate, i.e, by
passing along its send rights,

The authentication server maintains a "public
port" for clients to log in on. A public port is
like any other port on the network except that
all citizens have send rights to the public port
by knowing its node number, socket number and
encryption key. Indeed, it really need not have
an encryption key, but that would mean it was
handled in a manner that was different than any
other port in the system. The authentication
server also maintains one "master" encryption key
analogous to a password for each citizen of the
network. Recommended practice dictates that
the establishment of the master keys not be done
over the network, but be established by an "out
of band" channel. For example, the system
administrator may physically unlock the
authentication server and manually key in the
required information directly.

Revisiting the net server for a moment, recall
that the net server is a process running on each
node whose purpose is to convert messages on
the node into messages over the network, On
initialization, a net server sends a message on

behalf of a citizen to the public port of the
authentication server, requesting that a private
port be established. A reply is passed to port
with the message. The authentication server
responds to the reply port with a message
containing the private port for that citizen. This
initial transaction is completely normal except
for one additional item: the reply message from
the authentication server is encrypted, not only
under the normal encryption key provided with
the reply port, but with the master key known
only to the authentication server and to the
citizen. Only when the master key is known,
can the private port the authentication server
has allocated for the citizen be discovered. The
use of the master encryption key prevents a
citizen from tricking the authentication server
and every other server in the network into
believing it is a different citizen.

After initialization, the net server's port
correspondence table has a network port in it,
namely the private port to the authentication
server, The encryption key used is the one
expected -by the authentication server, and so it
could be thought of as an interchange key.
There is also a local port, which the net server
has receive rights to, that is logically interposed
between. the authentication server and the
network port. This local port can be made
available to other processes: acting on behalf of a
citizen on the node .for use .in communicating
with the authentication server -provided of course
that those processes belong to-the same citizen.
Note that the master key itself need never be
sent over the network. This scheme avoids all
hardwired ports except for the single public port
on the authentication server.

Liberty Net Enhancements and Limitations

Nothing in this design precludes multiple net
servers from. operating on a single node. This
seems to be the desirable way to implement
gateways.

With very minor modification, this scheme will
support nodes with multiple identities (such as
time sharing systems). All that is needed is to
initialize the. net server with one private port for
each identity., Each identity receives a local
port with which it communicates with the
authentication server.

The possibility of a distributed authentication
server requires further exploration, but appears
to be feasible.

The Liberty Net design cascades gracefully. By
caching ports, servers can get into an extended
dialogue with clients if they so desire, without
having to communicate with the authentication
server again. Caching ports will reduce the
workload on the authentication server
dramatically. For security reasons it may be
desirable to keep transactions short so that keys
are changed.frequently.

This proposal does not address the possibility .of

102

replayed messages, messages received out of
sequence, or corrupted messages (above the
normal communications checksum). Given the
model that permits send rights to be transferred
this freely, keeping track of sequence numbers
presents some difficulties. Sequence numbers and
additional checksums could be part of higher
level protocols if this turns out to be necessary.
Replayed messages- can be handled by nonce
identifiers, as in (4).

Implementation Status

A prototype of the Liberty Net has been built in
DEC's Corporate Research Group. The system
consists of five LSI 11/23s running UNIX*, and
interconnected by 10MB Ethernet. As of this
writing, plans ‘are being made to add VAX-
11/750s** to the Liberty Net. In addition to
workstations, there is a post office, a central
file server, and ‘the authentication server.

As expected, without IPC modifications to UNIX,
and with processors of limited speed,
performance is poor.

Security goals for .the system were modest.
Rather than building a secure system, we wanted
to concentrate on key distribution strategies. As
a result, we decided to use a computationally
inexpensive encryption algorithm. It would
clearly be preferable to use an encryption chip,
as is now currently available from a number of
commercial suppliers, given the amount of
encryption being performed. Alternatively, if
security is not an issue for a specific application,
no encryption need be applied except for log in.

* UNIX is a trademark of Bell Telephone
Laboratories.

** VAX is a trademark of Digital Equipment
Corporation.

Acknowledgements

This design and implementation was the
collaborative effort of a number of people: Ed
Balkovich, Ken King, Dave Leblang, Pete Lee,
Fred Maryanski, Dan McCue, Craig Schaffert and
Nave Velten. It benefited from discussions with
Rick Peebles, Roger Needham, Maurice Wilkes,
George Robertson and Rick Rashid.

Our port model was influenced heavily by the
Accent system under development as part of the
Spice Program at Carnegie-Mellon University.

(1

2)

(3)

®)

(5)

References

R.F. Rashid and G.G. Robertson, "Accent :
A Communication Oriented Network
Operating System Kernel", Proceedings of
the Eighth Symposium on Operating Systems
Principles, December 1981, pp. 64-75.

NDOD Standard Transmission Control
Protocol, January 1980, Defense Advanced
Research Projects Agency, 1400 Wilson
Boulevard, Arlington, Virginia, 22209.

XEROX Corporation, "Internet Transport
Protocols", XSIS 028112, December 1981,
Xerox Corporation, Stamford, Connecticut
06904

R.M. Needham and M.D. Schroeder, "Using
Encryption for Authentication in Large
Networks of Computers”, CACM 21, 12
(December 1978), pp. 993-999.

A.D. Birrell, R, Levin, R.M. Needham, and
M.D. Schroeder, "Grapevine : An Exercise in
Distributed Computing", Proceedings of the
Eighth Symposium on Operating Systems
Principles, December 1981,

103

