Efficlent Implementation of Ada Tasks
Januarv, 1980

A. N. Habermann .
Carnegie Mellon University

and

o Isaac R, Nassi]
Digital Equipment Corporation

ABSTRACT: A mechanism is described for implementing ACCEPT bodies in
Ada as critical sections controlled by P and Velike
operations on state variables which are similar to
semaphores, It is shown that the implementation makes task
switches at the point of 'rendezvous unnecessary_in most
cases, The mechanism 1is general, but allows significant
optimizations for straightforward progranms,

Computer Science Department
Carnegie=Mellon University
Pittsburgh, Pa. 15213 USA

Digital Ecuipment Corporation
146 mMain Street
Maypard Ma. 01754

This research was sponsored in part by the Defense Advanced
Research Projects Agency (DOD), ARPA order no. 3597, monitored by the
Air Force Avionics Laboratory under contract F33615«78-C=1551,

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official opolicies, either expressed or implied, of the 'Defense
Advanced Research Projects Agency or the U.S. government,

Efficient Implementation of Ada Tasks Page 1
INTRCCUCTION 04 Jan B0

1.0 INTRODUCTION

Multitasking in Ada consists of a set of interdependent language
constructions built around the concept of a rendezvous, An entry in
Ada belongs to a task activation. An accept statement names an entry,
and associates the entry name with a body of code, Additionally,
there is a list of formal parameters associated with the entry.
Intertask communication is accomplished by "calling” an entry with the
same notation used to call a procedure, The task activation executing
an accept statement and _the task calling the entry meet _1n a
rendezvous and stay locked in time until the body of code associated
with the accept statement completes its execution, at which peint both
the calling task and the called task continue asynchronously.

Thus, two scenarios are possible. The calling task can issue the call
¢{rst, or the task owning the entry can execute an accept for that
entry first., A naive implementation might work as follows: -

i. Call precedes accept

A task calls the entry in the other task and blocks, When
the called task executes an accept for this entrvy, it
associates the actual parameters with the formals of the
entry and executes the body textually associated with this
accept. When the body completes, the calling task is made
ready to execute and the scheduler is entered to select a
task to execute next, The called task continues to be
available for scheduling.

2, Accept precedes call

The task owning the entry executes an accept for the entry
and blocks. A task issues an entry call and blocks, after
making the first task eligible for schedulinag. when this
task starts executing, it executes the bodyv, and continues as
in case 1.

Observe that either two or three scheduling points are required,
depending on which of the above cases applies. At each scheduling
point, there is the potential of a task context switch, in which the
state of the task must be saved, and the context of another task
restored and made ready to run, Fortunately, there is a better way,
Our solution attempts to reduce the number of context swithces by
allowing the accept body to run as part of the caller’s thread of

gEfficient Implementation of Ada Tasks Page 2
INTRODUCTION 04 Jan 80

control. Two benefits accrue from this approach. First, we reduce
the number of scheduling points by one in all_ cases, The second
benefit is that in some cases, the task owning the entry need not
exist as a separate "thread of control®™ at all, by can be optimized
into a structure closely resembling a monitor.

Wwe implement our approach in terms of 8 syntax directed translation
scheme to emphasize that the translation is automatic, and driven
solely by the syntax of the language, That is, each production of the
lanqguage will cause certain fixed code patterns to be generated, which
can then be subject to further optimization,

In the next section, we discuss the translation scheme for accept and
select statements, and entry calls, 1In section 3 we discuss issues
relating to data access and exception handling, and in section 4 we
discuss some possible optimizations of the aglven translation schemes,
In section 5 we discuss some issues relating to monitors.

2.0 GENERAL TQSKING TRANSLATIGN.SCHEHES
2.1 Compiler Generated Data Structures

Several pieces of information are associated with a task activation
for the purpose of managing a rendezvous. Each task activation is
described by a task activation variable that includes the following
three components:

tv.gate = A boolean arrav representing the set of entries associated
with a task. An entry can be accepted to initiate a
rendezvous only if the entry is present in the gate,

tv.mutex = A semaphore which is used to control the critical sections
which regulate rendezvous initiation and termination.

tv.tasksem = A semaphore used to control a task when it calls
another task and has to walt for completion of the
entry call.

In addition to a single task activation variable, there is an entry
variable associated with each entry of a task activation. Each entry
variable has two components:

Efficient Implementation of Ada Tasks , Page 3
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80

ev.,address = This is the address of the body of code textually
associated with the currently executing accept statement,
This is necessary because a task can have multiple accept
statements for a particular entrv.

ev.wlist = This is a 1ist of calling tasks awaiting execution of an
accept statement. It is a property of the languaae that
a calling task can be waiting on at most one ev.wlist.

In addition, there is a semaphore associated with the code of_ each
select statement, and a semaphore associated with the code of each
accept statement that is not a select alternative. These semaphores
control the execution of nested accept or select statements and
interrediate code between these statements,

The compiler generates initialization code for the task’s activation
variatle and its entry variables, as well as_the accept and select
semaghores when the task is initiated. The mutex semaphore is set to
true, the tasksem semaphores are set to false, and each entry’s
waiting list is set to empty. The accept and select semaphores are
set to false,

Entries can have multiple accept bodies, and as statements, accept
statements can be nested within other accept statements. Consider the
following example:

accept A(...) doO

accept A(ses) dO ... ©nd A}
accept B(oes) dOo ... end B?

e e e

end A?

accept B(e.es) dO ... ©nd B}
accept C(.sqs) dOo ... end C3}

The body address of entry C is fixed, but those of entries A and B
depend on the current locus of control. This explains the need for
the address field in the entry variable,

Efficient Implementation of Ada Tasks - Page 4
GENERAL TASKING TRANSL&TIGN SCHEMES 04 Jan 80

2.2 An Example

In order to motivate the detailed solution that follows, it will be
informative to examine the translation of an Ada task which buffers
characters in an attempt to smooth variations 1n_ speed between a
consuming task and a producing task ([Ichbiah), It ls recommended that
this example is first read to get a general impression of the issues.
It 1is not necessary for the reader to fully understand the details of
the translation as given, but rather its general shape, This example
can be understood in full detail after reading section 4, It is
discussed in section 4.7.

The buffering task contains an internal pool of characters processed
in a rounderobin fashion. _The pool has two indices, an IN_INDEX
denoting the space for the next input character and an OUT.INDEX
denoting the space for the next output character.

Efticient Implementation of Ada Tasks Page S
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80

task BUFFER is
entry READ (C : out CHARACTER):
entry WRITE (C ¢ in CHARACTER):

end;

task body BUFFER is

POOL_SIZE : constant INTEGER := 1007

POOL ¢ array (1 .. POOL.SIZE) of CHARACTER;

COUNT : INTEGER range 0 ,., POOL_SIZE := 0;
IN_INDEX, OUT_INDEX : INTEGER range 1 ,., POOL_SIZE

oo
"
-

begin
loop
select ,
when COUNT < POOL.SIZE =>
accept WRITE (C ¢ CHARACTER) do
POOL (IN_INDEX) := C;
end: o)
IN_INDEX t:= IN_INDEX mod POOL.SIZE + 1;
COUNT := COUNT + 1;
or
when COUNT > 0 =>
accept READ (C : CHARACTER) do
C := POOL (OUT_INDEX);
end;) B
QUT_INDEX $= OUT_INDEX mod POOL-SIZE + 1;
COUNT = COUNT = 17
end select;
end loop;

end BUFFER?

The desired translation of this task will define two procedures called
"read" and "write" whose execution will be mutually exclusive. 1In
addition, there will be some initialization for the task which 1is
executed when the task is initiated. The translation of "read" and
"write® is given below:

Efficient Implementation of Ada Tasks Page 6
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80

initiate:
== allocate and initialize user variables
== type entry.indices is (write_index, read. index)
== temp.gate : arrav(entrv.indices) of boolean

Jump to setnext;
read: prologue(read.index);
pool(in_index) = c;
in_index := in_.index mod pool_size + 1;
count 3= count + 1{;
jump to setnext;
write: prologue(write_index);
¢ := pool(out_index); .
out_index := out.index mod pool_.size + 1:

count := count = 1;
jump to setnext;

setnext:

count < pool_size;
count > 0:

temp_gate(write_index]
temp_gate[read.index]

p(buffer.tv.mutex):
for each i in temp_gate loop

if buffer.eviil.wlist /= empty

then
k := head(buffer.ev(i).wlist):
vik.tasksem);
return:
end 1if;
end loop;

buffer.tv.gate := temp.gate;
v(buffer.tv.mutex);
return;

Efficient Implementation of Ada Tasks Page 7
GENERAL TASKING TRANSLATICON SCHEMES j 04 Jan 80

proclogue(entry) =
p(buffer.tv.mutex);

i¢ not buffer.tv.gate(entryl
then) o)
link me on buffer,evientryl.wlist;
v(buffer,tv.mutex);
p(me.tasksem); . P
~ unlink me from buffer.evientrvl.wlist;
end if£;

buffer.tv.gate = empty:
v(buffer.tv.mutex);
return;

When the task is initiated, the program executes the "setnext"
operation, whose purpose is to enable the acceptance of "read" if the
buffer is not empty, and "write®" if the buffer is not full. If anvy
tasks are waiting on an entry queue, one_is allowed to proceed, If no
tasks are vaiting, then the gate of "acceptable" entries is
initialized, and mutual exclusion is released.

The "read" and "write" operations each are synchronized through_ some
(nearly common) prologue code which is called, but could easily be
inserted in line if desired. The purpose of the prologue code is to
guarantee that the entry is disallowed from proceeding when:

o The other operation (i.e. the "buddy") is in progress,
o Another call to either read or write is starting.

o The boolean condition guarding this entry is false,

A key point is that once an operation is permitted to proceed, it does
s$0 without blocking. The calling task executes at most two
p-operations on which it may block, both in the prologue, The first
should wusually not cause a block, as will be discussed later. The
second is only invoked when the buddy operation is in progress. Thus,
it is 1likely that the calling task will rarely block, and then, only
out of necessitv.

Efficient Implementation of Ada Tasks Page 8
GENERAL TASKING TRANSLATICN SCHEMES 04 Jan 80

2.3 Translation Of Entry Calls

First, we describe the translation of an entry call. Then, we
describe the code at the destination of the call, which we call the
prologue code, This code corresponds to an entry_declaration. Next,
we give a default translation scheme a compiler mioht use to translate
an accept statement which is not a select alternative, Finally, we
describe the translation of a select statement,

2.4 Translation Of Entry Calls
An entry call
t.e(al '32 Fe .'.'.an)

is compiled as a simple procedure call to a piece of prologue code
associated with the entry e,

prologue(t.tv, t.e, ai, a2, ..., an)

Actual parameters are associated with formal parameters in _the wusual
wav. Because the compiler cannot, in general, determine which task is:
calling the task that it is currently compiling, an implementation may
chaose to pass the caller’s task variable "me" as an additional
parameter to prologue,

2.5 Translation Of Entry Declarations

The prologue code is given below, in which "tv" refers to the task
activation variable of the called task, "ev" 1s the entry variable for
entry e, and "me" refers to the task activati n variable of the
calling task.

Efficient Implementation of Ada Tasks Page 9

GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80
e: p(tv.mutex);
if not (e’index in tv.gate)
then

link me on ev.wlist;

v(tv.mutex);

p(me.tasksem); _

~ unlink me from ev.wlist;

end 1f; _
tv.gate := empty’ .
(%) == Establish data context
v(tv.mutex):
jump indirect to ev.address;

This code is similar to a P-operation, It delays a calling task until
it can execute the appropriate accept body. It sets the gate to empty
so that no other calling task will succeed in executing an accept body
after one task succeeds in passing the entrance to an accept bodv.

Under certain assumptions of preemptive, scheduling, the operation
p(tv,mutex) may be implemented as a simple busy vaiting loop as no
paths of execution to the corresponding v operation cause a task to be
suspended with tv.mutex locked. The operation v(tv.mutex) simply sets
tv.mutex to one,

I1f a calling task finds the entry of its choice closed, it puts itself
onto the waiting queue for the desired entry and allows other tasks to
execute the prologue code by performing the v(tv.mutex), The task
walts on 1its own tasksem until awakened when another task performs a
v(tv.tasksem)., When the task 1s awakened, it does not go through
another p(tv.mutex), because the running task leaves it locked. We
are assured that the awakened task does not have to compete with
newcomers and find that the open entry has been seized by one of them,
The effect is that the running task hands over its critical sectlion to
the awakened task.,

The prologue ends with a Jjump to the current accept body. The
strategy using the entry variable‘’s goto field guarantees that we
choose the correct bedy., It is too early to decide which bodv to
select when a task starts in the prologue, The calling task may have
to wait and the locus of control may change before it is awakened.
Therefore, the calling task does not use the ev.address field until it
i{s selected to go ahead., The correct return address and the actual
parameters have already been made avallable to the accept body when
prologue was called.

Efficient Implementation of Ada Tasks Page 10
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80
2.6 Translation Of Accept Statements
we consider the translation of accept statements in two cases: simple
accept statements which are not part of a select statement, and the
accept statements of a select statement, i.e. & select alternative,
An accept statement of the forms

accept e(...) do s;

is translated into:

jump to ¢

se code for the accept body s
epi(acceptsem)
return

(oF setstate(acceptsem,e,tv,ev,s);

Code between labels "s" and "c" is executed by the calling task, while
the code starting at label "c" and the jump instruction is executed by
the called task., The epi operation simply allows the called task to
be activated,

epi(acceptsem) =

(+) -= Restore data context
v(acceptsem);

(The symbols marked "(*)" and "(+)" will be discussed in section 4 and
are included here as polnts of reference,.)

The setstate operation is similar to a V-operation. Its purpose is to
enable other tasks to complete their prologue, and to choose one of
them if they are on the waiting list.

Efficient Implementation of Ada Tasks Page 11
GENERBL TASKING TRANSLATION SCHEMES 04 Jan 80

setstate(acceptsem,e,tv,ev,s)

p(tv.mutex);
ev.,address = s§¢
if ev.wlist empty

then
tv.gate(e) := true;
vitv.mutex);
else i
choose one task (K) on ev.,wlist
) v(k.tasksem);
end if;

p(acceptsem);

If there is a task waiting for an entry to open and that entry is
included in the new gate value, one such task is awakened, but the
critical section is not closed by a v(tv.mutex), The critical section
is taken over by the awakened task at the point of the statement in
the prologue which unlinks the awakened task from the waiting 1list,
AS observed earlier, this strategy prevents other tasks from
overtaking the awakened task,

The operations setstate, prologue, and epl can be implemented either
as closed or open code. The choice involves a space=time tradeoff
that can be left up to the individual implementation.

2.7 1Translation Of Select Statements

The select statement implements multi-way waiting in Ada, with
optional timeouts (the delay alternative) and a provision for
proceeding if no entry call has been made (the else alternative). The
transformation from single accept statements to select statements is
straightforward: instead of opening the gate for @ simple accept
body, the gate is opened for all the accept bodies given by the select
alternatives.

The entry call and the prologue code are exactly as before. This 1is
important because entries can be accepted in the same task both inside
and outside of select statements. As we’ve observed, the binding may
not be known at the time of the entry call,

Efficient Implementation of Ada Tasks ' Page 12
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80

Select alternatives may be guarded by Boolean expressions, The
corresponding alternative can only be chosen if the guard evaluates to
true, An absent gquard is assumed to be true,

A select statement of the form:

translates to:

si:

si’

select
when bl =>
accept el (...) do sli;
rest of alternative 17
or
vhen b2 =>
accept €2 (...) do s2;
rest of alternative 2:
or

end select;

jump to ¢}

code for si;)
episel(selectsem,si’,labelvar);
return 5

rest of alternative 1;

jump to ¢’;

code for s2;
episel(selectsem,s2’,labelvar);
return

rest of alternative 2;

jumnp to ¢*’;

selectstate(selectsem,tv, (evi,el,si1), (ev2,e2,82), ..
jump indirect to labelvar:;

)

Efficient Implementation of Ada Tasks Page 13
GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80

selectstate is similar to setstate. It takes as arquments a semaphore
on which the task executing the select waits, the task activation
variable for the task executing the select, and a set of triples of
entry variables, entries, and the accept bodies to which they are to
be bound. There is one triple for each accept alternative in the
select statement, so that the argument list is determinable at compile
time,

selectstate(selectsem,tv,(evi,ev,81),...) =

temp_gate := evaluate.guards(); == returns a bit pattern
_ i == gf true guards
p(tv.mutex); o
for each entry ei in temp.gate loop

evi.goto := si;

if evi.wlist not empty

then i
choose one entrv(k) on evi,wlist;
v(k.tasksem);

- Jump to b?
end 1if:
end loop;
tv.gate = temp.gate;
v(tv.mutex);
. bs p(selectsem);

episel(selectsem,s’,labelvar)
labelvar := s§8°;)
(+) -= Restore data context
viselectsem);

2.8 Celay Alternatives

In the example shown above, the assumption was made that there is no
else or delay alternative, 1If there is a delay alternative delaving
for time dt, replace the p(selectsem) in the above example with the
code that follows., If there is more than one delay alternative, the
one with the smallest delay must be used, and the skeleton given below
must be suitably modified. A bit is allocated in the guard which
coressponds to the delay alternative, This bit 1is set or not
depending on the evaluation of the guard for the delay alternative, 1in
the same way as the guards for the other alternatives.

Efficient Implementation of Ada Tasks Page 14
GENERAL TASKING TRANSLATICN SCHEMES 04 Jan 80

b: hibernate(dt);
p(tv.mutex):
if tv.gate not empty

then

tv.gate := empty’

vi(tv.mutex); .)

code the body of the delay alternative here;
else .

vitv.mutex)?

) p(selectsem);

end if£;

In addition, the accept alternatives given above must be modified so
that the hibernate 1is cancelled whenever the accept statement is
executed, That is, place the following line in front of each accept
body:

cancel_hibernate;

The actual details of this are system specific and are not relevent to
the general schenme, Operation of a delay alternative proceeds by
hibernating after all appropriate gates have been opened, If one of
the accept alternatives has been executed, or the specified time has
elapsed, the hibernating task is awakened, and 1in the former_ case
closes the gate and executes the delay alternative body, and in the
latter it simply performs a Peoperation that corresponds to the
veoperation executed by the calling task. (This P-operation can be
optimized away, depending on how these semephores are actually
implemented,)

2.9 Translation Of Else Alternatives

I1f there is an else alternative, then the task executing _the accept
should not wait at all, and so we replace the code following the loop
in the definition of selectstate with the following:

Efficient Implementation of Ada Tasks Page 15
GENERAL TASKING TRANSLATION SCHEMES 04 Jan B8O

v(tv.mutex); .
code for the else alternative;
bs goto ¢’;

2.10 Nested Accept Statements

Care must be taken in performing & setstate operation for a nested
accept. The problem arises because the accept body for the outer
accept is being executed by a task (t1) other than the one which_ owns
the entry (t0), vyet tl has access to t0°s task activation variable,
Thus, if t2 performs a rendezvous with ti1°’s execution of the inner
accept, t2 must not release the semaphore on which t0 is blocked.

Fortunately, our scheme above handles this case with no modification,
All that 1is necessary is to associate a different semaphore with the
nested accept. 0Only one semaphore is needed for each (dynamic)
nesting level of accepts, but because of procedure calls it may be
easier to logically associate a different semaphore with each accept
or select, and use other facilities in the compiler to perform
temporal lifetime analysis on these semaphores in an attempt to merge
them,

2.11 Multiple Opposing Entries

we mentioned before that an entry may have a number of different
accept bodies associated with 1it. We deal with these through the
entry variable goto field. In terms of the task body, it means that
sev.cal accept bodies may have the same name, There is one case we
purposely don‘’t handle as described in the Ada reference manual. This
is the case of a select statement containing several accept bodies
with the same name,

Efficient Implementation of Ada Tasks Page 16

GENERAL TASKING TRANSLATION SCHEMES 04 Jan 80
select
accept al,.0) do ... &nd a;
or
accept bl(ase) do ... end b;
or

accept a(.,.0) d0 ... €nd a;
end select;

The reference manual says that one of the. a bodies must be chosen
randamly. In our opinion this construct should not be allowed because
of its ambiguity. In addition, if allowed, we don‘t 1like to use 2
randor number generator, Our implementation happens to pick the last
body. 1t can easily be changed to pick the first, but we do not
really care about this.

3.0 DATA ACCESS AND EXCEPTION HANDLING

The calling task executes a portion of the called task, 1.e, the
accept body, as part of its own thread of control, However, the body
of the accept may require access to the state space local to the
called task., Because of this, and because the language requires that
exceptions raised during the rendezvous are propagated in both the
calling and the called tasks, It 1s necessary to perform some
administration before execution of the accept body.

This proceeds in three steps., First, the dynamic link (frame pointer)
of the called task is obtained from its saved state, This is easily
accessible to the calling task as it 1is a property of the task
.activation, and the task must be known or else it couldn’t be called,
Second, the calling task’s dynamic 1link {is stored in a reserved
location in the stack frame, This frame is marked to indicate that,
if an exception occurs, it must be propagated past this frame along
both dynamic links. Finally, the called task’s dynamic link is stored
as the dynamic link of the calling task.

These steps are executed in the code seguences given above, 1in the
places marked by (*). The dynamic link must be restored at the end of
the rendezvous, and this point is indicated above by (+).

Efficient Implementation of Ada Tasks : Page 17
DATA ACCESS AND EXCEPTION HANDLING 04 Jan 80

This model assumes all tasks are running in the same address space,
The language requires that some provision be made for accessing shared
data across tasks, and thus if an implementation decision is made to
run tasks in separate address spaces, some mechanism for this kind of
data access is already (partially) present, Fortunately, parameter
passing copy semantics alleviates some problems of data sharing during
intertask communication,

4.0 OPTIMIZATION

The general scheme presented 1is aquite efficient. However, some
important cases allow substantial optimizations on the general scheme.

4,1 Semaphores

As mentioned earlier, under certain assumptions the mutex semaphore
that controls 4initlation and termination overations of a rendezvous
can be implemented with busy waiting on a bit of information. _ The
justification is by examination of the code sequence, There 1ls no
opportunity for the running task to block before it releases the
semaphore, and so any task waiting on the semaphore will, as far as
its concerned, not have to wait very long, The Kkey assumption that
must be satisfied to implement the busy wait scheme 1s that the busy
waiting will not block a higher priority task from executing, This
can happen using preemptive priority schedulers in the following
situation: task T1 is executing the prologue code and therefore is in
the critical region guarded by the mutex semaphore., _Task T2 preempts
T1 and tries to call the same entry that Ti1 was calling, immediately
causing deadlock.,

Another optimization comes from the observation that all task
semaphores are ‘“private" in that no other task will ever perform a
p-operation on such a semaphore., This means that none of the private
semaphores can ever have more than a single task waiting on them, and
it is always the same task, Thus, there need be no queue manipulation
on a P=operation on any of these semaphores, although when
unavailable, a scheduling decision may be made,

A third point to be noticed, is that a compiler may be able to observe
that the lifetimes of certain semaphores do not overlap, and therefore
their storage can be shared,

Efficient Implementation of Ada Tasks Page 18
OPTIMIZATION 04 Jan 80

4,2 Special Instructions

some systems have special instructions which operate efficiently on
queues, The particular queueing strategy to be used here for entry
variable waiting lists has not been specified, and 1s 1left to the
compller implementation to exploit these instructions,

4,3 Context Mapping

In some cases, accept bodies are such that no_data context needs to be
accessed, and so one would 1like to verify that the operations
specified for dynamic links can be avoided, Unfortunately, in order
to omit the dynamic link operations, one must verify that exceptions
cannot be propagated from the calling task. This may be difficult to
verify,

4,4 Non=Synonymous Accept Bodies .

In the case that a compiler can determine that there is only a single
accept body associated with an entry, the goto field of the entry
variable can be omitted, and so can its initialization., . The_ entry
prologue code then jumps directly to the body, instead of indirectly
through the ev.address, Even better, the prologue may physically
precede the accept body, saving even the transfer of control,

4.5 Code Motion (A Very Important Optimization)

Counter to what is said in the reference manual, it may be
advantageous to pull simple pieces of code into accept statements and
avaid having code in between accept statements. In this way, the
calling task executes more of the called task then just the accept
body. If an intermediate piece of code can be absorbed by an accept
statement, the V, P, and the invocation of setstate is placed at the
end of the accept statement. The V and Peoperations cancel each
other, and can be removed, The branch to the P=-operation |is
retargeted in a straightforward way.

Efficient Implementation of Ada Tasks Page 19
OPTIMIZATION 04 Jan 80

4.6 Avoidance Of Context Creation

In extremely simple tasks, it is possible to avoid setting up a
separate data context. variables "own" to a task can be stored in the
context of the task which is the static parent of the simple task,

This kind of task is commonly referred to as a "monitor", It is not
clear how to characterjze monitors exactly so that no separate date
context is needed, Creation and placement of local variables of the
task depend on code generation style, so specific guidelines cannot be
given, In the simplest case, this optimization may be applied_ when
there is no code outside of accept bodies, no procedure calls inside
the accept bodies, and all variables can be allocated either in
registers or in an outer context.

4.7 Transformations Used In The Puffering Example

in section 2.2 we presented the desired translation of an example of a
puffering task, We now indicate how the general translation scheme of
section 2 can be optimized to the desired result. The €first
translation moved some code and the setstate operation "into" the
rendezvous (see 4.,5), since these were the next operations executed
outside of the select statement, It was observed that the code for
the setstate operation could easily be shared by both select
alternatives and the initiation code,

The second transformation is based on the observation that read and
write each have only one accept statement (see 4.4), and so there is
no need to use an indirect branch from the prologue code to the accept
body. In this case, we chose to code the call to the prologue code
directly in front of the accept body.

Finally, we were able to omit the selectsem semaphore and its V- and
pe-operations (see 4.6), because we could guarantee that they would
always be executed in succession by the same task, This left no
semaphores associated with BUFFER’s thread of control. The task has
now effectively been converted to a monitor.

Efficient Implementation of Ada Tasks Page 20
A NOTE ON MONITORS 04 Jan 80

S.0 A NOTE ON MONITORS

1t has been argued [Hilfinger] that it may be useful for programmers
to distinguish between monitors and processes. A monitor is a task
without private code (i.e, without code sections between accept
and/or select statements), while a process does have private code. We
feel that the distinction has some merits, but that it should not be
reflected in the syntax of Ada. There is no need to replace the
keyword task by two-different ones_that distinguish between process
and monitor. We argue that is 1s preferable to have a uniform task
concept as currently provided in Ada,

The implementation of monitors is somewhat more efficient than that of
processes. However, there is no point in expressing that the more
efficient implementation is applicable by using a_ special kevyword,
because we showed that an Ada compller will automatically generate the
more efficient code if a task has ne private code,

The distinction of having or not having private code is not so much
related to the monitor concept, but more related to the desired
concurrency in the computation. Let <p> and <a> be two code sections
that can be coded either as

accept BA(...) do <p>; <a>; end A} e
or as
accept Af.o..) do <p>; end A: <€3>7 oo

In the first case the calling task resumes its main program <m> when
both <p> and <g> have been executed. In the second case the calling
task resumes <m> after <p> has been executed, whille <a> can be
executed in parallel with the continuation of <m>, It is clear that
it depends on the nature of code <a> which alternative is more
desirable, If <g> may interfere with <m> or i{f <a> is trivial code,
the first alternative is the better one., If <ao> does not interfere
with <m> and 1is relatively 1long, it may be worth the extra task
activation to allow for concurrent execution. The flexibility 1is in
the choice a programmer has in writing a task bodv. A special kevword
is not helful.

Efficient Implementation of Ada Tasks Page 21
CONCLUSION 04 Jan 80

6,0 CONCLUSION

we have presented a general and flexible scheme for syntax directed
translation of tasking constructs in Ada, This scheme avoids
excessive waiting of tasks wishing to call entries, and may optimize
tasks which own entries "out of existence", The scheme we have
proposed requires no searching of queues, and can be implemented with
a very high degree of efficiency on a wide range of architectures.

Efficient Implementation of Ada Tasks Page 22
REFERENCES 04 Jan 80

7.0 REFERENCES

{Hilfinger] The Tasking Facility in Ada, P.N. Hilfinger, June 1979

(Habermann] Implementation of Regular Path Expressions, CMU
Technical Report ANH 7902, Januarv 1979

(Ichbiah] Preliminary Ada Reference Manual, J. Ichblah et al,
SIGPLAN Notices, Vi4 N2 (June 1979).

fend of paper)

